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Abstract. Rubber friction plays a fundamental role in the study of the tire-road

interaction and still represents a topic of discussion for both academics and

manufacturing companies, especially with the introduction of the concept of

multiscale roughness [1, 2].

Taking into account that the road surface is a hard substrate, the two con-

tributions to rubber friction can be considered to be (i) hysteretic phenomena

deriving from time dependent viscoelastic deformations of the rubber due to the

substrate asperities and (ii) adhesive effects.

From the modelling point of view, the estimation of each contribution rep-

resents a great challenge, and both formulations are inevitably affected by the

presence of empirical constants. For example, hysteretic friction could be in

principle computed by a full multiscale Persson’s theory [1, 3], but the latter one

ultimately embraces an arbitrary choice of the cutoff frequency value, and,

furthermore, the full multiscale theory can be in most cases simplified [4]. The

adhesive contribution, instead, remains fundamentally empirically described by

fitting functions and parameters, and, despite considerable progress and huge

effort in this research field, it continues to represent the greatest challenge as

well as to recognize the relative importance of the two contributions [5]. In this

work, an analysis of the results obtained with the different formulations avail-

able in literature is proposed with particular reference to the empirical constants

variability.

Keywords: Viscoelasticity � Sliding contact � Friction

1 Introduction

Since the studies of the friction of rubber against hard surfaces by Grosch [6], it appears

that friction arises from two contributions: the adhesion and the deformation losses. The

latter contribution, also called viscoelastic friction, is due to the pulsating deformations
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the material is exposed to during sliding on the substrate asperities, meanwhile the first

one depends on less obvious phenomena within the area of real contact. Therefore, from

theoretical point of view, it is possible to write:

l ¼ lvisc þ ladh ð1Þ

The friction master curve of rubber on a rough track shows, in general, two peaks.

One of these occurs at high sliding velocity and it has been mainly attributed to

viscoelastic contribution (although at very high speeds the effect of temperature further

complicates the study generally lowering the friction coefficient) and the other one,

occurring in general at much lower velocities, is considered attributable to the adhe-

sion. In the Grosch studies, the latter peak appears much smaller than the viscoelastic

one, giving a negligible contribution on the total friction especially on rough surfaces,

but this may not be a general conclusion, as we shall see.

An elaborated theory to estimate the friction viscoelastic contribution was proposed

by Persson [1]. This theory is based on exact solution for sliding of a rough rigid

random surface in full contact with a viscoelastic medium. The exact formulation is

described by the following equation:

l q1ð Þ ¼ 1
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where p0 is the nominal contact pressure, U(q) the surface displacements power

spectrum (defined as a function of wavevector q), q0 is the smallest (relevant)

roughness wavevector and q1 the (much more important) truncating one, E() is the

complex viscoelastic modulus of the viscoelastic material.

Persson’s theory is obtained introducing various wise approximations in the real

condition of partial contact, being the full contact a very remote condition in practical

applications. The results of these corrections is (in the latest versions) a final calculation

that involves four nested integrals:
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and:

S qð Þ ¼ cþ 1� cð ÞP2 qð Þ ð6Þ

where c = 1/2 is an empirical fitting constant obtained to match numerical results.

Notice that P(q) = A(q)/A0 is the contact area, normalized respect to the nominal one,

observed at the magnification q/q0.

Ciavarella [4] proposes a much simpler formulations of Persson’s multiscale theory

for the friction due to viscoelastic losses suggesting only the finest “single scale” at the

so called large wavevector cutoff contributes to the integration process:

l ¼ h
0

rms q1ð Þ ImE q1vð Þp
2 E q1vð Þj j ð7Þ

where h0rms is the rms slope of the surface that depend on the cutoff wavevector q1 and E

(q1 v) is the complex viscoelastic modulus of the rubber (for a given temperature), at

the circular frequency 2 p f = q1 v.

Notice that both formulation [1, 4] define the friction as a function of the truncating

wavevector q1 or, equivalently, as a function of the rms slope of the surface profile.

Indeed, the rms slope of surfaces varies wildly at small scales and in principle would

grow up to infinity, and at atomic scale, it is certainly badly defined. Lorenz et al. in [3],

suggest to fix the cutoff wavevector so that including all the roughness scales with

wavenumber q < q1 gave h0rms q1ð Þ ¼ 1:3. The reason for this choice is not so clear,

and, more importantly, this aspect is not suggested by any other author, so it remains a

best fit for a limited number of experimental results.

The modelling of the adhesive contribution, unfortunately, remains even more

radically empirical. Although some simple models exist for dry clean surfaces in

sliding contact, based on the consideration that the rubber molecules will interact

stretching, detaching, relaxing, and reattaching to the surface of the substrate, ulti-

mately (Schallamach [7] and Cherniak et al. [8], Persson and Volokitin [9]) the theory

returns that the adhesive contribution is proportional to the frictional shear stress, which

is a Gaussian-like curve as a function of the logarithm sliding velocity:

ladh ¼
sf

p0

A

A0

ð8Þ

where this function is used by [9]:

sf ¼ sf 0exp �c log10
v

v�

� �2
� 	

ð9Þ

which has the critical aspect that in large parts it resembles a bell-shaped curve like the

viscoelastic contribution, as we shall see, not permitting to identify the relative con-

tribution unambiguously. If one wants to add this contribution, hence, the parameters c,

v* and sf0 must be estimated by subtracting the viscoelastic contribution from the total
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one. It worth noting that in Eq. (8) the dependency of µadh from the normalized contact

area A(q)/A0 appears and so, again, from the choice of the cutoff wavevector q1.
A further complication of the problem stems from non-linear effects related to the

viscoelastic modulus of the rubber. Indeed, generally the viscoelastic modulus E

depends on the frequency of the excitation, on his temperature and on the level of

strain, E = E (x,T,e). A recent approach proposed by Tolpekina et al. [10] is to assume

a correction for a typical strain e involved in the problem of interest. The authors

suppose for sliding friction on the rough surfaces e ≅ 1, needing knowledge of non-

linear characterization of the rubber to evaluate the adhesive friction. Notice that the

choice of e ≅ 1 for sliding contact is also dependent on the choice of the cutoff

wavevector q1 and that this assumption implies a reduction of the small strain modulus

E(x) of a factor ≅ 0.1—i.e. a full order of magnitude, which is highly sensitive to the

choice of the truncating wavevector of roughness. This strain softening causes an

increase of µadh by means of the normalized contact area A(q)/A0 (at the same con-

ditions of sf).

It appear quite clear that the friction estimation is still a problem of great com-

plexity where the present formulations only permit a vague possibility of interpreting

experimental data, but hardly a “predictive” capability.

In this paper we show some examples of the challenge represented by the recog-

nition of the importance of the two contribution by the friction curves. In particular,

starting from the viscoelastic properties of the rubber and the PSD of a rough surface,

an analysis of the results obtained with the different formulations is proposed, and

compared with experimental results, with particular reference to the empirical constants

variability.

2 Experimental Data

In order to analyse typical compound of interest in asphalt vs tyre contact and to give a

quantitative example of the analysis made, all of the following is referred to the

experimental data obtained Tolpekina and Persson [5, TP in the following] remarking

that all the considerations made can be extended to any couple of rubber/substrate.

2.1 Viscoelastic Modulus

A full characterization of the viscoelastic properties of the rubber is fundamental for

rubber friction calculations. The knowledge of the complex elastic modulus of the

rubber over a rather large frequency range is necessary, as well as its behaviour at

different strain values when the non-linear effects related to the viscoelastic modulus of

the rubber would be taken into account. The standard way of measuring the viscoelastic

modulus is to deform the rubber sample in an oscillatory manner with a constant strain

or stress amplitude. This is done at different frequencies and then repeated at different

temperatures. The results measured at different temperatures can be shifted according to

the time-temperature superposition principle to form a master curve covering a wide

range of frequencies at the chosen reference temperature. Tolpekina and Persson have

performed measurements of the viscoelastic modulus in both shear and in tensile
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(elongation) modes, providing both the shear modulus G(x) and the Young’s modulus

E(x). These moduli are related via E = 2G(1 + m) where m = 0.5 is the Poisson ratio.

In Fig. 1 are reported the real part of the Young’s modulus and the tand = ImE/ReE

as a function of the logarithm of frequency for compound B of TP.

TP affirm that when a rubber tread block is sliding on a road surface, the strain in

asperity contact regions is typically of order one, e ≅ 1. To take this into account the

effect of these large strain account, they perform strain sweep measurements up to a

Fig. 1. The real part of the Young’s modulus at the reference temperature T = 20 °C, as a

function of frequency.

Fig. 2. The tand = ImE/ReE as a function of the logarithm of frequency at the reference

temperature T = 20 °C.
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strain of order one, resulting in a reduction of the small strain modulus E(x) of a factor

Sf ≅ 0.1, where Sf is the strain softening factor [10].

2.2 Surface Roughness Power Spectrum

As rough surface for the rubber friction analysis a concrete block was considered. This

type of substrate is very stable (negligible wear) and is easily available in a large

number of nominally-identical blocks. The most important information about the

substrate is the surface roughness power spectrum. Notice that it is possible to find

different normalization of the PSD and therefore it is important to pay attention to the

formulations used for the calculation of the quantities such as the root-mean-square

(RMS) height ℎrms, the RMS slope h0rms, and the RMS curvature h00rms [11]. Referring to

Persson formulation, Fig. 3 shows the 2D surface roughness power spectrum of the

concrete surface and the significant range of interest of this self-affine fractal power

spectra can be assumed to be a power law:

C qð Þ ¼ C0 � q�2 1þHð Þ ð10Þ

where the Hurst exponent H = 0.86 and C0 = 0.001152 m^(2-2H). The q0 wavevector

considered in this study is q0 = 102.7, but fortunately the choice of this truncation is not

very relevant for friction estimation, while the choice of the large wavenumber cut-off

is extremely more sensible and arbitrary, as debated in the next section.

2.3 Friction

The available measured data for low velocities (LV) and higher velocity (HV) was

obtained by TP using two different experimental setups. Friction for LV were obtained

by means the Leonardo da Vinci experiment, which allows only to measure the friction

Fig. 3. The surface roughness power spectrum of the concrete substrate.

1130 A. Genovese et al.



coefficient on the branch of the µ(v)-curve where the friction coefficient increases with

increasing sliding speed [12]. The friction coefficients for the sliding speeds of 0.1, 0.3,

1, and 1.8 m/s were obtained by means a Linear Friction Tester (LFT).

Figure 4 shows the measured data and calculated results, by using Persson for-

mulation, for rubber sliding on concrete. Notice that the total friction curve is calculated

as a sum of the viscoelastic and adhesive contribution plus a constant term µconst = 0.2

(yet another empirical choice), which the authors refer to the “scratching of the con-

crete surface by the hard filler particles”.

The parameters adopted for the friction calculation are summarized in Table 1,

where h0rms is calculated as:

h0rms ¼
Z

C qð Þ � q3dq ð11Þ

3 Analysis of Multiscale Theories

In this section, we want point out that the recognition of the importance of the adhesive

and viscoelastic contribution is not at all simple and obvious. Indeed, starting from the

viscoelastic properties of the rubber and the PSD of a rough surface, we propose different

Fig. 4. The measured (symbols) and calculated (lines) friction coefficient using the Persson

formulation.

Table 1. Summary of the reference parameters adopted for the friction calculation.

q1 h0rms µconst log10 v* (m/s) sf0 (MPa) Sf

2�106 1.3 0.2 −1.97 4.0 0.1
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set of arbitrarily determined parameters, which return a different combination of

Gaussian-like curves of the two contributions, allowing an equally good fitting of the

experimental data.

Firstly, we investigate the theoretical results obtained calculating the viscoelastic

contribution using the simplified formulation (Eq. 7). Again, the total friction curve is

calculated as a sum of the viscoelastic and adhesive contribution plus the constant term

µconst = 0.2. The parameters are the same as those used for the calculation with the

Persson theory and reported in Table 1.

Figure 5 shows the measured and calculated friction coefficient on the concrete

surface as a function of the logarithm of sliding speed, using the simplified formulation.

The lower red curve is the (calculated) viscoelastic contribution to the friction coeffi-

cient, the green is the adhesive contribution and the upper blue curve is the total

calculated friction.

The results obtained with Persson theory and the simplified formulation do not

show significant difference for low velocity friction data being these results considered

as principally influenced by the adhesion. For high sliding velocity some difference can

be appreciate but this data are often not predicted appropriately.

Here it should be empathized that these results are strongly influenced by the value

of some parameters that are fixed in a non-rigorous way. In particular:

Fig. 5. The measured (symbols) and calculated (lines) friction coefficient on concrete as a

function of the logarithm of the sliding speed, using the simplified formulation for the viscoelastic

contribution.
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– the choice of the cutoff wavevector q1 influences strongly both viscoelastic and

adhesive contribution;

– the term µconst = 0.2 which is attributed to scratching of the concrete surface by the

hard filler particles is quite arbitrary;

– The reference velocity v* and the sf0 influence significantly the adhesive curve;

– The assumption that for sliding friction on the rough surfaces the deformation is e ≅

1 imply a reduction of the strain modulus E(x) of a strain factor Sf ≅ 0.1. Due to the

non-linear effects related to the viscoelastic modulus of the rubber, lower strain

values would cause sensible variation of the Sf and therefore of the adhesive

friction.

Adopting the simplified formulation for the viscoelastic friction and the Eqs. (8)

and (9) for the adhesion, we propose different combinations in the choice of these

parameters able to give an equally good fitting of the available experimental data. In

Table 2, five different parameters’ set used for simulation are summarized, while Fig. 6

reports the corresponding friction results.

The experimental data at low velocity (red symbols in Fig. 6) seem well fitted by

all parameters sets proposed. Notice that set A returns friction attributable almost

exclusively to the viscous contribution, having considered null the constant term and

resulting negligible the adhesive one because of the choice of a large cutoff wavevector

q1 and because of not considering the non-linear effect attributed to the viscoelastic

modulus of the rubber. Despite this combination of parameters, with the formulations

considered, the results do not seem acceptable for higher sliding velocity, that high-

lights the great influence the choice of the cutoff wavevector has on the recognition of

the importance of the adhesive and viscoelastic contribution.

The other sets give results that appear satisfactory in relation to the available

experimental data underlining that is not possible to determine these parameters

unambiguously.

Table 2. Summary of the different parameters sets adopted for the friction calculation.

SET q1 h0rms µconst log10 v* (m/s) sf0 (MPa) Sf

A 2 � 1010 4.5 0 −1 4.0 0.1

B 2 � 106 1.3 0.3 −1.80 8 0.2

C 2 � 105 0.9 0.3 −1.8 8 0.31

D 3 � 104 0.63 0.35 −1.8 8 0.51

E 107 1.66 0.25 −2 5.5 0.1
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4 Conclusions

We have considered present multiscale theories for rubber-tyre friction and we have

remarked, by means of actual examples that:

– unfortunately even the most elaborate theories to date (in particular those of Persson

and co-authors), contain a number of empirical parameters, which are not uniquely

defined, at least against the present experimental evidence

– the multiscale aspect of friction, which clearly complicates the theories significantly,

in most cases doesn’t appear so fundamentally needed, since simplified formula-

tions which permit immediate calculation without the need to implement any

recursive integration, interpolation (with all the risks associated with incorrect

coding of such models), seem to have comparable fitting capabilities

– the adhesive contribution seems in recent studies more important than in the earlier

studies of Grosch. Unfortunately, this part is even more “fundamentally empirical”

than the latter

– given the models of viscoelastic and adhesive contributions return friction curves

which are very similar in large parts of the velocity spectrum, it remains difficult to

attribute with precision the relative contribution

– non linear effects strongly affect the adhesive models, while they affect the vis-

coelastic friction less. These are also not simple to measure and to include unam-

biguously, as their role depends also on the true strain level at the truncating

wavelength of roughness, which remains arbitrary.

Fig. 6. The measured (symbols) and calculated (lines) friction coefficient on concrete as a

function of the logarithm of the sliding speed for different set of arbitrary parameters.
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