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Abstract. Nowadays, the active safety systems that control the dynamics of passenger cars
usually rely on real-time monitoring of vehicle side-slip angle (VSA). The VSA can’t be measured
directly on the production vehicles since it requires the employment of high-end and expensive
instrumentation. To realiably overcome the VSA estimation problem, different model-based
techniques can be adopted. The aim of this work is to compare the performance of different
model-based state estimators, evaluating both the estimation accuracy and the computational
cost, required by each algorithm. To this purpose Extended Kalman Filters, Unscented Kalman
Filters and Particle Filters have been implemented for the vehicle system under analysis. The
physical representation of the process is represented by a single-track vehicle model adopting
a simplified Pacejka tyre model. The results numerical results are then compared to the
experimental data acquired within a specifically designed testing campaign, able to explore
the entire vehicle dynamic range. To this aim an electric go-kart has been employed as a
vehicle, equipped with steering wheel encoder, wheels angular speed encoder and IMU, while
an S-motion has been adopted for the measurement of the experimental VSA quantity.

Keywords: Kalman filters, Particle filters, vehicle state estimation, vehicle dynamics
modeling, side-slip angle

1. Introduction
The typical active safety systems that control the dynamics of passenger cars rely on real-time
monitoring of vehicle side-slip angle (VSA), but the VSA is not measured directly because it
requires the use of high-end instruments, which usually cannot be equipped in the passenger
cars due to the significant related costs and bulky instrumentation [1]. However, this is not the
only application field, indeed an accurate knowledge of the VSA may improve the ADAS system
or may be used to improve the trajectory in autonomous vehicle [2]. In the motorsport field,
the application of the VSA is used to enhance the overall vehicle performance during the race.
In all these application fields the VSA estimation is increasingly diffused, and it is evaluated
employing different measurements available onboard, such as wheel velocities, linear and angular
accelerations [3] [4].

The technical literature is plenty of articles about VSA estimation. There are different
approaches to estimate the VSA starting from the observer-based methods [5], [6], [7] up to
neural network data-based techniques [8], [9]. The observer-based methods are characterized
by the type of state estimator adopted, e.g. Extended Kalman filters [10] [11], in which the
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Jacobian matrix computation is required and the nonlinear problem is linearized through a
Taylor expansion. In [12] and [13], Unscented Kalman filters are adopted. The application of
such filters is widely used due to an easier implementation because they do not require the
computation (analytical or numerical) of the Jacobian matrix. In this work, another type of
state estimator is considered in addition to the ones mentioned above, consisting in the Particle
filter. The main applications of this latter involve the tracking problems, as reported in [14].

All the filters are based on the mathematical modeling of the process to estimate, a
mathematical representation of the vehicle is required in this application. Different assumption
have to be stated in order to model the vehicle dynamics. Two kinds of vehicle models can
be found in the literature, which are denoted respectively as kinematic and dynamic [15]. The
kinematic model is concerned with the vehicle motion with no reference to forces; thus, it does
not need complex parameters such as those regarding tyres, which often are the cause of the
non-linearity of the vehicle model. However, the main issue of VSA estimation using a kinematic
vehicle model lays in the fact that it does not work when the vehicle yaw rate is relatively small
or zero, this leads to the system unobservability, as reported in [16]. The dynamic model, on the
other hand, provides a more detailed description of the vehicle dynamics, as it is based on the
equilibrium equations. It can have different levels of detail/complexity and hypotheses used, each
of them affects the estimation accuracy. Several authors introduce simplifying hypotheses, such
as a single-track vehicle model as in [17] and [18]. Additional assumptions may be adopted, as
the availability of the vehicle longitudinal speed or the hypothesis of small steering angles. Quite
often the equilibrium equations are coupled with a tyre model but it is not strictly necessary
as proposed in [19], there are several approaches, the most used are: linear models, Pacejka
models, rational tyre model [20] and Dugoff model [21]. The use of a dynamic model can lead to
a good VSA estimation, however, the accuracy of the results strongly depends on the tyre model
parameters. Unmodeled effects, such as road conditions and tyre wear, can dramatically worsen
the reliability of the estimation, meanwhile other secondary effects as the type of suspension
adopted [22] and the thermodynamics of the tyre inner chamber [23] can be neglected easier in
certain hypothesis. Several authors attempt to deal with this issue employing algorithms which
provide an online update of tyre parameters as in [24] and [25]. A single-track vehicle model and
a simplified Pacejka tyre model are adopted in this work, the main reason is that the aim of this
paper is to compare the performance of different types of state estimators using the same plant
model. The benchmark is not only based on the estimate accuracy but also on the run-time
capability of each proposed algorithm.

An electric go-kart is employed to acquire the data-set. It is equipped with sensors in order
to acquire the necessary input signals to feed the process model of the filters. In addition, an
S-motion is used to acquire the true VSA and to validate the estimate one [26].

The paper is organized as follows: an overview of the implemented state estimators is reported
in section 2, the mathematical formulation of the vehicle and tyre models is described in section
3. In Section 4, the implementation of the filters and the experimental data acquisition are
shown. In section 5, the results obtained are shown comparing them towards the experimental
VSA. Finally, the conclusions are reported in section 6.

2. State Estimators
State estimators implemented for VSA estimation are presented in this section, they are based
on the filtering technique and, in particular, their discrete-time form is considered. The plant
model is assumed the same for each filter. It is based on the physical equations presented in the
next section, considered in a discrete time form applying the Euler method. Basically, it is a set
of nonlinear equations that can be summarized by the following equation:
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x̂−k = f(x̂+k−1, uk−1) + wk−1

zk = h(x̂−k , uk) + vk
(1)

Concerning the first equation, the term on the left side is the a-priori state estimate, on the
right side there are the functions f(·) that represent the nonlinear system of equations and the
process noise term, respectively. x̂+k−1 is the previous time a-posteriori state estimate. The
second equation is a set of nonlinear and linear equations that gives in output the estimate
measurements relying on the a-priori state estimate. uk−1 and uk are additional inputs at the
previous and current time step, respectively. The terms wk−1 and vk represent the noise terms; in
this work they are considered additive, white, Gaussian, zero-mean and uncorrelated. The noise
covariance matrices are respectively Q and R and are computed adopting a ”training” method,
that runs the filter and tries to minimize the prediction error through a surrogate optimization
algorithm [27].

2.1. Kalman filters
Numerous nonlinear Kalman filters can be found in literature, however all them descend from
the linear kalman filter (KF) theory [28]. The KF algorithm can be divided into two steps:

• Time update, it projects the last computed state estimate ahead in time. It is also called
prediction step.

• Measurement update, it adjusts the projected estimate by an actual measurement at that
time. It is also called correction step.

However the KF is adopted only with linear process, in this application nonlinear Kalman filters
are required. This briefly introduction is necessary in order to point out the basis of the next
KFs, in fact the steps are common to every KFs but each one is characterized by a specific
strategy to deal with the nonlinearity of the process.

2.1.1. Extended Kalman Filters The EKFs attempt to approximate the nonlinear system
around the state estimate. Three types of EKFs are implemented in this work and they are
briefly presented.

The First-Order Extendend Kalman Filter (FO-EKF) is based on the linearization of the
nonlinear system around the state estimate using the first-order Taylor expansion [28] [29]. It
approximates measurement equations by expanding it in a Taylor series around x̂−k , the reason
is because it is the best estimate of xk before the measurement at time k is taken into account.
When the a-posteriori state estimate is obtained, the best estimate of xk becomes x̂+k .

The basic idea of the Iterated Extended Kalman Filter (I-EKF) is to reduce the linearization
error by reformulating the Taylor series expansion around x̂+k [28]. This process can be repeated
as many times as desired: although, for most problems the majority of the possible improvements
is obtained by re-linearizing only one time. The main difference between SO-EKF and I-EKF
is the iteration cycle that refines the measurement update equations at time k, so the more the
measurement equations are nonlinear the more effective the refinement is.

The Second Order Extended Kalman Filter (SO-EKF) perform a second order Taylor
expansion of the process equations, f(·) and h(·) [28].

Summing up, the EKFs rely on the computation of the Jacobian matrices (and also Hessian
matrices in SO-EKF), their computation may be quite difficult and and computationally
expensive especially for high nonlinear systems. These matrices can be evaluated analytically
or numerically, in the first case the computational burden required is smaller than in the second
case.In this application the first method is adopted.
The main EKFs flaw is the linearization of a nonlinear process, in fact the linearized
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transformation is a good estimation method only when error propagation can be well
approximated by a linear model, this could force the use of very small sampling times.

2.1.2. Unscented Kalman Filters Unscented Kalman Filters (UKFs) aims to overcome the
main EKFs’ flaw, it provides a simpler and more immediate way to propagate mean and
covariance of random variables through a non-linear transformation [30] [31]. The unscented
transformation is used to calculate the statistics of a random variable which undergoes a
nonlinear transformation. The UKFs propagate the mean and covariance of the sigma points
using system nonlinear equations and the a-priori state estimate is the weighted mean of them.
As well, predicted measurements for each propagated sigma point can be computed the using
the measurement equations and the predicted measurements vector is the weighted mean of
them. The implemented UKFs differ in number of sigma points and/or weights formulation. An
example of sigma points are reported in (2), they refer to the General Unscented Kalman Filter.
The parameters α and k control the spread of the sigma points around the mean state value.

x(0) = x̄

x(i) = x̄+ x̃(i) i = 1, . . . , 2n

x̃(i) = (
√
α2(n+ k)Pxx)Ti i = 1, . . . , n

x̃(n+i) = −(
√
α2(n+ k)Pxx)Ti i = 1, . . . , n

(2)

The simpliest UKF is here called Simply Unscented Kalman Filter (S-UKF), it uses 2n sigma
points and also they have the same weight. Referring to the (2), in this case α is set equal to 1
and k is null.

Based on [32] and [33], it can be shown the same order of mean and covariance estimation
accuracy can be obtained by choosing (2n + 1) sigma points instead of (2n) as before. This
type of UKF is called General Unscented Kalman Filter (G-UKF). This means that the 2n
sigma points are symmetrically distributed around the mean value. The G-UKF’s algorithm
and the S-UKF’s algorithm are quite the same, the main difference is the number of sigma
points computed at each time step and their weight factors as shown in [28].

A new set of sigma points and weight factors can be introduced. It can be shown that if
the state vector, x, has n elements then the minimum number of sigma points, that gives the
order of estimation accuracy of the previous section, is equal to (n+ 1) [33]. These sigma points
are called simplex sigma points and for this reason the algorthm is called Simplex Unscented
Kalman Filter (SIMP-UKF). However, the number of sigma points can be reduced to (n + 1)
by choosing one of the weights to be zero. This type of filter aims to reduce the computational
effort reducing the number of sigma points without losing in estimation accuracy.

The Spherical Unscented Transformation aims to rearrange the sigma points of the simplex
algorithm in order to obtain better numerical stability, as reported in [31] and [33]. The filter
based on this transformation is called Spherical Unscented Kalman Filter (SPHE-UKF).

The UKFs don’t require the computation of Jacobian o Hessian, unlike the EKFs, this is
a great advantage that make them easy to implement for all the nonlinear system. The main
obstacle lays in the fact that the state covariance matrices must be semi-definite positive in
order to have real matrices after applying the Cholesky decomposition [28]. This goal can be
achieved tuning the noise covariance matrices.

2.2. Particle Filters
Particle Filter (PF) aims to estimate the state of a nonlinear process investigating the properties
of sets of particles rather than the properties of individual particles as in UKFs. It is a completely
nonlinear state estimator, unlike the UKFs and the EKFs presented before which are based on
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the approximation of the nonlinear system. It is a technique for implementing a recursive
Bayesian filter by Monte Carlo (MC) simulations [34]. The key idea is to represent the required
posterior density function by a set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number of samples becomes very large, the
MC characterization becomes an equivalent representation to the usual functional description of
the posterior pdf [14]. Therefore, the basic idea is to randomly generate a given number N state
vectors based on the initial pdf p(x0), that is known. These state vectors are called particles
and are denoted as x+0,i, with i = 1, . . . , N . At each time step, each particle is propagated

to the next time step using the system of equations f(·) in (1). Each propagated particle is
characterized by a weight that reflects the likelihood that the particle represents the true state
of the system. This weight factor is based on the of the measurement equation and of the pdf
of the measurement noise, the relative likelihood qi that the estimate measurement zk is equal
to a specific measurement yk, given the premise that xk is equal to the particle x̂−k,i, can be
computed as follows:

qi = P [(zk = yK)|(xk = x̂−k,i)] = P [vk = yK − h(x̂−k,i)]

∼ 1

(2π)m/2|R|1/2
exp

(−[yk − h(x̂−k,i)]
TR−1

2
[yk − h(x̂−k,i)]

) (3)

A resampling strategy is applied, in other words a brand new set of particles is computed:
the basic idea is to eliminate particles that have small relative likelihood and to concentrate on
particles with large one. A lot of resampling strategy can be found in literature, an exhaustive
collection is done in [35], only three strategies are implemented in this application: Multinomial
Resampling, Stratified Resampling, Systematic Resampling. Finally, for each time step the
a-posteriori state estimate is computed as a weighted sum of the resampled particles.

The main implementation issue consists of the sample impoverishment, this can be overcome
simply increasing the number of particles Ns, but this can quickly lead to an unreasonable
demand of computational cost , and often simply delays the inevitable sample impoverishment.

3. Mathematical Model
Several vehicle and tyre models are present in literature [15]. In this case, considering the main
goal of this work, a single-track vehicle model and a simplified Pacejka tyre model has been
chosen [36].

3.1. Vehicle model
The vehicle model adopted in this work is a single-track vehicle model, which does not require the
knowledge of such not easily measurable vehicle parameters. Taking into account the assumption
behind this model as reported in [15], in this application the hypothesis of small steering angle
is not considered, because the steering angle values reached during the on-track tests are not
so small to be neglected. The vehicle involved is an electric go-kart, in which the braking and
tractive forces affect only the rear axle.
The kinematic equations of the vehicle model are:

ax = u̇− v r
ay = v̇ + u r

(4)

With a the linear acceleration, u the longitudinal velocity of the CoG along the x-axis, v the
lateral velocity along the y-axis, and r the angular velocity around the z-axis.
The vehicle side-slip angle is given by
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Figure 1. Single-track vehicle model basic scheme

β = tan−1
(
v

u

)
(5)

Considering the equations (4), the equilibrium equations are:

m (u̇− v r) = Fx1 cos(δ1)− Fy1 sin(δ1) + Fx2

m (v̇ + u r) = Fy1 cos(δ1) + Fx1 sin(δ1) + Fy2

Jz ṙ = Fy1 a1 cos(δ1) + Fx1 a1 sin(δ1)− Fy2 a2

(6)

The equations above are defined in the ISO body-fixed reference system, the forces Fxi and Fyi
1

are given by the tyre model adopted and are defined in the ISO tyre reference framework.

3.2. Tyre model
As mentioned, a simplified version of the Pacejka tyre model, based on the macro-parameters
instead of micro-parameters, has been adopted [36]:

F0 = D sin {C arctan [B xs − E(B xs − arctan (B xs))]} (7)

The formulation is the same for both planar forces, the independent variable xs identify the slip
ratio or the tyre slip angle. The tunable parameters are not all considered as fixed parameters,
indeed a vertical load dependence is adopted for the peak value D:

D = D(Fz) = µFz = (a1 Fz + a2)Fz with a1 < 0 (8)

in this case the terms a1 and a2 are fixed value parameters. The parameters B, C and D define
the slope in the linear region [36].

The effect of the combined slip case has been taken into account by the G-function (or Hill
function), again considering the shift null:

G = cos {Cc arctan[Bc xc − Ec(Bc xc − arctan(Bc xc))]} (9)

1 where the index i refers to the axle, 1 for the front axle and 2 for the rear one.
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Note the difference between the independent variable in (9) and in (7), if xs is the tyre slip angle
so xc is the slip ratio and vice versa. All the macro-parameters are computed starting from
the output obtained using a T.R.I.C.K. methodology [37], which provides a virtual telemetry
requiring the acquired data set as input. The obtained forces and slips are used as true values
in order to calibrate the MF model presented above.

Finally the formulation of the MF force in combined slip case is given by:

Fc = F0 G (10)

These tangential forces are assumed to be dependent only on: tyre vertical load Fz, tyre slip
angle α and slip ratio k. The dependence on the camber angle γ and on the spin slip φ as well
is neglected in this work.
The vertical load may be evaluated with different levels of accuracy. In this work the
aerodynamics effect is neglected, and because of the chosen vehicle dynamics model (Single
track) only longitudinal load transfer and the static load distribution affect the vertical forces
acting on the single wheel at the front and rear axle.

The mathematical formulation of the slip ratio and the tyre slip angle, for each axle, is given
by:

α1 = arctan

(
(v + r a1) cos (δ1)− u sin (δ1)

|u cos (δ1) + (v + r a1) sin (δ1)|

)
k1 =

ω1Rr1 − u cos (δ1) + (v + r a1) sin (δ1)−
u cos (δ1) + (v + r a1) sin (δ1)

α2 = arctan

(
(v − r a2)
|u|

)
k2 = −ω2Rr2 − u

u

(11)

4. Implementation of the filters and experimental data acquisition
The mathematical formulation of the physical model described in the previous section is
implemented as process of each filters. In this application, the state vector of each filter is
constituted by:

xk = [uk, vk, rk]T (12)

longitudinal and lateral vehicle velocity [m/s] and yaw rate [rad/s] respectively. The filter
requires the knowledge of some measurements acquired at each time step, in order to correct
the a-priori state estimate provided by the process. In this application, the elements of the
measurement vector are:

yk =

[
ωENCODER
1,1k

, ωENCODER
1,2k

, rIMU
k , aIMU

yk
, aIMU

xk

]T
(13)

respectively rotational velocity of the front-left and front-right wheels [rad/s], yaw rate [rad/s]
and longitudinal and lateral vehicle linear acceleration [m/s2]. The elements of this vector are
compared with the corresponding estimate ones, the difference is proportional to the amount of
correction of the a-priori state estimate.

The system equations adopted in each filter descend from the equilibrium equations (6), they
are computed starting from the (14) and applying the Euler method.
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u̇ = v r +
1

m

(
Fx1 cos(δ1)− Fy1 sin(δ1) + Fx2

)
v̇ = −u r +

1

m

(
Fy1 cos(δ1) + Fx1 sin(δ1) + Fy2

)
ṙ =

1

Jz

(
Fy1 a1 cos(δ1) + Fx1 a1 sin(δ1)− Fy2 a2

) (14)

the expressions on the right side are strongly non-linear, especially because of the tyre model
chosen. As mentioned above a linearization is needed to implement the FO-EKF and the I-EKF
or in other words the Jacobian matrix has to be computed, it is given by the partial derivatives
of f(·) with respect to the state vector x:

∂f

∂x

∣∣∣∣
x̂+

=
∂f(x̂+, u, 0)

∂x
=

a1 a2 a3
a4 a5 a6
a7 a8 a9


(15)

where the expressions of each term are reported in the Appendix B. The Hessian computation
is required for the implementation of the SO-EKF, it is not reported here for sake of simplicity.
The same can be done with the measurement equations h(·) given by the expressions below:

ω11 =
cos (δ11)

Rr1

û− +
sin (δ11)

Rr1

v̂− +
a1 sin (δ11)− t1/2 cos (δ11)

Rr1

r̂−

ω12 =
cos (δ12)

Rr2

û− +
sin (δ12)

Rr2

v̂− +
a1 sin (δ12)− t1/2 cos (δ12)

Rr2

r̂−

r = r̂−

ay =
1

m

(
Fy1 cos(δ1) + Fx1 sin(δ1) + Fy2

)
ax =

1

m

(
Fx1 cos(δ1)− Fy1 sin(δ1) + Fx2

)
(16)

On the right side of the equations above there are the estimate measurements, which are
compared to the acquired ones computed by (13).

The measurements mentioned in (13) are acquired by sensors, in addition some of them
feed the system equations as seen in (1) and are called additional inputs uk−1 or uk. These
measurements require sensors which are commonly used for the basic data acquisition, sometimes
they equip common vehicles and are used to prevent critical events. In this application an electric
go-kart is used in order to acquire the experimental data, several indoor on-track tests have been
conducted with the aim to explore the vehicle behaviour in different operating conditions. The
vehicle is rear drive and also the brakes affect only the rear axle. The sensors adopted consist
of: an encoder per each front wheel to acquire the rotational velocity whereas the rotational
velocities of the rear ones is measured through the electric motors, an IMU which acquires the
in-plane accelerations and the yaw rate, an S-motion provides the true values of the longitudinal
and lateral velocities (thus the side slip angle) and finally an encoder measures the steering
wheel angle. Starting from this latter, the steering angle of the front wheels is computed using
a non-linear function identified using experimental data. All acquired data are subjected to
post-processing, consisting in the cleaning (deleting the incorrect and/or duplicated samples),
synchronisation, filtering and resampling (20 Hz in this application). The signals acquired by
the IMU and S-motion are transported to the CG using rotational matrices that are based on
the geometrical distances of the sensors from the CG.
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5. Results and validation
In this section the obtained results are presented, comparing each estimate VSA to the
experimental one acquired by the S-Motion. All the filters are ”trained” using the same algorithm
that provides the process and measurements covariance matrices.

As can be seen in the figures below, the VSA estimation depends on the type of filter
implemented. They refer to one of the led tests, the other ones are taken into account in
term of mean RMSE of the estimate VSA in the table (1).

Table 1. RMSE mean values for each test.

[deg] TEST 1 TEST 2 TEST 3 TEST 4 MEAN

FO-EKF 2.52 1.18 2.23 2.02 2.03

I-EKF 2.46 1.26 2.09 2.26 2.02

SO-EKF 2.48 1.20 2.36 2.22 2.06

S-UKF 2.10 1.32 2.38 1.59 1.85

G-UKF 2.40 1.06 2.72 2.87 2.26

SIMP-UKF 2.60 1.39 2.95 1.86 2.20

SPHE-UKF 2.17 1.43 2.82 2.70 2.28

MULTIres-PF 4.62 1.32 3.53 3.80 3.32

SYSTres-PF 3.26 1.38 3.24 3.65 2.88

STRAres-PF 4.28 1.44 3.88 3.99 3.40

Another filter’s index of performance taken into account in this work is the run-time. The
mean run-time required by each algorithm is reported in the table (2). This may be useful in
the real-time application, for this reason the time taken by each implemented filter to estimate
1 s of real time acquired data is considered.

Considering each test, the implemented EKFs provide quite similar VSA estimations. The
figure (2) refers to the test #3, in which the I-EKF outperforms the others at the beginning, this
is due to the refining provided by the iteration cycles. The time taken by the EKFs is different,
as can be seen in table 2, the FO-EKF needs less than the half of the time taken by the others.

The implemented UKFs provide slightly different VSA estimations. The best performance in
term of RMSE are achieved by the S-UKF and the G-UKF, that uses more sigma points than
the others. Note that the S-UKF outperforms the G-UKF on three out of the four tests. The
time taken by the EKFs is different and the same trend is repeated for each test. The G-UKF
require more time than the others, as expected, because it adopted 7 sigma points and also their
weight factors are different, while in the S-UKF they are the same and the number of sigma
points involved is 6. The SIMP-UKF and the SPHE-UKF require a very similar execution time,
they differ only in the weight factor definition and both use 5 sigma points.

The implemented PFs always provide noisy VSA estimations and also higher value of RMSE.
In general, the SYSres-PF outperforms the others, but they are not so far one each other as
shown in figure (4). The execution time is very high if compared to the other filters ones. In
addition, note that if the random number generator is not fixed, the results depends on the
random numbers generated as well, that could be very different at each run of the PF.
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Table 2. Time taken by each implemented filter to estimate 1 s of real time acquired data.

[ms/s] TEST 1 TEST 2 TEST 3 TEST 4 MEAN

FO-EKF 8.20 8.86 8.64 7.49 8.30

I-EKF 22.91 24.35 25.19 22.37 23.71

SO-EKF 18.26 20.63 19.31 17.84 19.01

S-UKF 27.78 27.36 27.79 25.952 27.22

G-UKF 39.08 37.20 35.98 34.08 36.59

SIMP-UKF 25.73 25.13 23.28 22.24 24.10

SPHE-UKF 25.08 25.42 23.52 22.45 24.12

MULTIres-PF 311.0 310.9 306.0 305.8 308.5

SYSTres-PF 309.4 303.2 306.1 304.0 305.7

STRAres-PF 308.2 302.9 308.1 306.8 306.5

Figure 2. VSA estimated by EKFs and acquired by S-motion
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Figure 3. VSA estimated by UKFs and acquired by S-motion

The estimated VSA, but also all the other estimated quantities as well, are characterized by a
noisy trend. This is due to the fact that the samples are very close one each other but the same
sample have also different weight factors at each time step: this means that at consecutive time
step the estimated value is not so close to the previous as in the previous filters.

At that point it becomes important to highlight that all the results presented are strongly
dependent on the Q and R matrices. As said, they are computed using a training method
based on an optimization method, the surrogate optimization for global minimization of time-
consuming objective functions has been adopted in thesis work, but others can be found in
literature [27]. However, the stopping condition adopted is the maximum number of function
evaluations, that has been set on 50, a relatively low value. In other words, the optimizator
runs 50 times the filter, changing the Q and R values, storing only the ones that minimize the
residual prediction error computed till now. In addition, this is repeated 2 times: the initial
values of Q and R obtained in the second optimization cycle are the best values provided by
the previous optimization cycle. Best VSA estimation may be achieved if higher limit is set
for the maximum number of function evaluations, but of course this requires much more time,
especially considering the PFs. The reason behind the low value chosen is that the the aim of
this work is to compare the different type of filters, adopting the same boundary conditions, not
looking for the best state estimate that each filter may provide.
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Figure 4. VSA estimated by PFs and acquired by S-motion

6. Conclusions
A vehicle sideslip angle estimation based on dynamic model is proposed in this work. The
purpose of this paper is to compare the performance of different model-based state estimators
(Extended Kalman Filters, Unscented Kalman Filters and Particle Filters) in terms of estima-
tion accuracy and the computational cost for a chosen vehicle. The mathematical model of the
vehicle and the features of each implemented filter have been mathematically presented.

Concerning the obtained results, the EKFs and the UKFs show a better state estimation
using the vehicle model presented and the Pacejka macroparameters computed. Considering the
mean value of the RMSE computed per each tests, the S-UKF exhibits the lowest value whereas
the other UKFs exhibit a value which is about the 20% higher; the EKFs show the same mean
value if compared one each other but this is about the 10% higher than the one reached by the
S-UKF; Finally, the SYSTres-PF shows the lowest RMSE mean value if compared with the other
implemented PFs, but if compared to the others the PFs exhibit the higher values, in particular
the STRAres-PF shows the highest one. Concerning the computational burden required by
each state estimator which can be considered as proportional to the time taken by the filter
to estimate 1 second of real time, the FO-EKF is characterized by the lowest amount of time
required, thanks to its simple algorithm. The other EKFs present a value which is about the
150% higher. Considering the UKFs, the SIMP-UKF and the SPHE-UKF require lower run-time
than the S-UKF and the G-UKF, this latter is characterized by the highest one if considering
only the Kalman-based filters, it is about the 340% higher than the lowest one. Considering the
PFs, the time required is one order of magnitude higher than the Kalman-based one, they take



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012156

IOP Publishing
doi:10.1088/1742-6596/2090/1/012156

13

about one-third of second to estimate 1 second of real time. However, the overall state estimate
is not always accurate, in same cases the estimate VSA is quite different than the actual one,
this may be mitigated adopting a complete Magic Formula, with micro-parameters instead of
macro-parameters. Moreover, it may be interesting to consider a tricycle vehicle model instead
of a bicycle one in order to take into account the lateral load transfer effect.

In order to improve the VSA estimation the tyre model may be a key factor, in this work
the macro-parameters are fixed, but considering their update during filter execution, due to
thermodynamics and wear effect, could lead to better results.
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Appendix A
The algorithms of the implemented filters are here reported.

Algorithm 1 First-Order Extended Kalman Filter algorithm

1: x̂+0 = E[x0] . Initial state
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ] . Initial state Covariance
3: procedure FO-EKF(T , {u}Tk=1)
4: for k = 1→ T do
5: x̂−k = f(x̂+k−1, uk−1, 0) . a-priori state estimate

6: P−k = Fk−1P
+
k−1F

T
k−1 +Q . a-priori state estimate covariance

7: zk = h(x̂−k , uk, 0) . a-priori measurement estimate
8: Kk = P−k H

T
k (HkP

−
k H

T
k +R)−1 . Kalman gain

9: x̂+k = x̂−k +Kk(yk − zk) . a-posteriori state estimate
10: P+

k = (I −KkHk)P−k . a-posteriori state estimate covariance
11: end for
12: end procedure

Algorithm 2 Iterated Extended Kalman Filter algorithm

1: x̂+0 = E[x0]
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ]
3: procedure I-EKF(T , {u}Tk=1, N)
4: for k = 1→ T do
5: x̂−k = f(x̂+k−1, uk−1, 0)

6: P−k = Fk−1P
+
k−1F

T
k−1 +Q

7: x̂+k,1 = x̂−k
8: for i = 1→ N do
9: zk,i = h(x̂+k,i, uk, 0)−Hk,i(x̂

−
k − x̂

+
k,i)

10: Kk,i = P−k H
T
k,i(Hk,iP

−
k H

T
k,i +R)−1

11: x̂+k,i+1 = x̂−k +Kk,i(yk − zk,i)
12: P+

k,i+1 = (I −KkHk)P−k
13: end for
14: end for
15: end procedure
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Algorithm 3 Second Order Extended Kalman Filter algorithm

1: x̂+0 = E[x0]
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ]
3: procedure SO-EKF(T , {u}Tk=1)
4: for k = 1→ T do

5: x̂−k = f(x̂+k−1, uk−1, 0) + 1
2

n∑
i=1

φiTr

[
∂2fi
∂x2

∣∣∣∣
x̂+
k−1

P+
k−1

]
6: P−k = Fk−1P

+
k−1F

T
k−1 +Q

7: zk = h(x̂−k , uk, 0) + 1
2

m∑
i=1

φi Tr

[
∂2hi
∂x2

∣∣∣∣
x̂−
k

P−k

]
8: Kk = P−k H

T
k (HkP

−
k H

T
k +R)−1

9: x̂+k = x̂−k +Kk(yk − zk)
10: P+

k = (I −KkHk)P−k
11: end for
12: end procedure

Algorithm 4 Simply Unscented Kalman Filter algorithm

1: x̂+0 = E[x0]
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ]
3: procedure S-UKF(T , {u}Tk=1)
4: for k = 1→ T do

5: x̂
(i)
k−1 = x̂+k−1 +

(√
nP+

k−1

)T

i

i = 1, . . . , n

6: x̂
(n+i)
k−1 = x̂+k−1 −

(√
nP+

k−1

)T

i

i = 1, . . . , n

7: x̂
(i)
k = f(x̂

(i)
k−1, uk−1, 0)

8: x̂−k = 1
2n

2n∑
i=1

x̂
(i)
k

9: P−k = 1
2n

2n∑
i=1

(x̂
(i)
k − x̂

(−)
k )(x̂

(i)
k − x̂

(−)
k )T +Q

10: z
(i)
k = h(x̂ik, uk, 0)

11: zk = 1
2n

2n∑
i=1

z
(i)
k

12: P y
k = 1

2n

2n∑
i=1

(z
(i)
k − zk)(z

(i)
k − zk)T +R

13: P xy
k = 1

2n

2n∑
i=1

(x̂
(i)
k − x̂

(−)
k )(z

(i)
k − zk)T

14: Kk = P xy
k (P y

k )−1

15: x̂+k = x̂−k +Kk(yk − zk)
16: P+

k = P−k −KkP
−
k K

T
k

17: end for
18: end procedure
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The G-UKF’s algorithm is similat to the S-UKF’s one, but it involves (2n+ 1) sigma points
as shown in (2) instead of 2n. The formulation of sigma points and weight factors are here
reported:

x(0) = x̄

x(i) = x̄+ x̃(i) i = 1, . . . , 2n

x̃(i) = (
√
α2(n+ k)Pxx)Ti i = 1, . . . , n

x̃(n+i) = −(
√
α2(n+ k)Pxx)Ti i = 1, . . . , n

W (0)
m =

α2(n+ k)− n
α2(n+ k)

W (i)
m =

1

2α2(n+ k)
i = 1, . . . , 2n

W (0)
c = (2− α2 + β)− n

α2(n+ k)
W (i)

c =
1

2α2(n+ k)
i = 1, . . . , 2n

The SPHE-UKF and the SIMP-UKF adopt a different formulation of the sigma points as
reported below:

Algorithm 5 Spherical Unscented Transformation

1: W (0) ∈ [0, 1) . Initial choice

2: W (i) = 1−W (0)

n+1 i = 1, . . . , n+ 1 . Weights initialization

3: σ
(1)
0 = 0 σ

(1)
1 = −1√

2W (1)
σ
(1)
2 = 1√

2W (1)
. Sigma vector initialization

4: for j = 2→ n do

5: σ
(j)
i =



[
σ
(j−1)
0

0

]
i = 0 σ

(j−1)
i
−1√

j(j+1)W (1)

 i = 1, . . . , j[
0(j−1)

j√
j(j+1)W (1)

]
i = j + 1

. Sigma vector building

6: end for
7: x(i) = x̄+ σ

(n)
i

√
Pxx i = 0, . . . , n+ 1 . Sigma points
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Algorithm 6 Simplex Unscented Transformation

1: W (0) ∈ [0, 1) . Initial choice

2: W (i) =

{
2−n(1−W (0)) i = 1, 2

2i−2W (1) i = 3, . . . , n+ 1
. Weights initialization

3: σ
(1)
0 = 0 σ

(1)
1 = −1√

2W (1)
σ
(1)
2 = 1√

2W (1)
. Sigma vector initialization

4: for j = 2→ n do

5: σ
(j)
i =



[
σ
(j−1)
0

0

]
i = 0[

σ
(j−1)
i
−1√

2W (j+1)

]
i = 1, . . . , j[

0(j−1)
j√

2W (j+1)

]
i = j + 1

. Sigma vector building

6: end for
7: x(i) = x̄+ σ

(n)
i

√
Pxx i = 0, . . . , n+ 1 . Sigma points

Appendix B
The terms in equations (15) are:

a1 = 1 +
∆t

m

(
∂Fx1

∂u
+
∂Fx2

∂u
− ∂Fy1

∂u
δ1

)
a2 = ∆t

(
r̂+ +

1

m

(
∂Fx1

∂v
+
∂Fx2

∂v
− ∂Fy1

∂v
δ1

))
a3 = ∆t

(
v̂+ +

1

m

(
∂Fx1

∂r
+
∂Fx2

∂r
− ∂Fy1

∂r
δ1

))
a4 = ∆t

(
− r̂+ +

1

m

(
∂Fy1

∂u
+
∂Fy2

∂u
+
∂Fx1

∂u
δ1

))
a5 = 1 +

∆t

m

(
∂Fy1

∂v
+
∂Fy2

∂v
+
∂Fx1

∂v
δ1

)
a6 = ∆t

(
− û+ +

1

m

(
∂Fy1

∂r
+
∂Fy2

∂r
+
∂Fx1

∂r
δ1

))
a7 =

∆t

Jz

(
∂Fy1a1
∂u

− ∂Fy2a2
∂u

+
∂Fx1a1
∂u

δ1

)
a8 =

∆t

Jz

(
∂Fy1a1
∂v

− ∂Fy2a2
∂v

+
∂Fx1a1
∂v

δ1

)
a9 = 1 +

∆t

Jz

(
∂Fy1a1
∂r

− ∂Fy2a2
∂r

+
∂Fx1a1
∂r

δ1

)
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