
Received 29 December 2024, accepted 5 February 2025, date of publication 7 February 2025, date of current version 14 February 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3539923

Design of a Machine Learning Approach to
Anomaly Detection in Tyre-Road Interaction
ALEKSANDR SAKHNEVYCH 1, NICOLA PASQUINO 2, (Senior Member, IEEE),
AND GIANCARLO SPERLÌ 2, (Member, IEEE)
1Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy
2Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy

Corresponding author: Giancarlo Sperlì (giancarlo.sperli@unina.it)

ABSTRACT Tyres show a strong non-linear dependence on vertical force, road roughness, wear level,
temperature gradient, and slip resulting in an additional challenge in calibration, whose parameters may
vary significantly with the tyre’s condition. An additional challenge to identifying and modeling the
multi-dimensional tyre variability lies in the low accuracy level of tyre-road interaction data presenting
physical inconsistencies and outliers, thus affecting outdoor testing scenarios. Indeed, outliers, gaps, or errors
in the data can compromise calibration performance, potentially leading to incorrect model identification
and rendering it unsuitable for further offline and online applications. In this paper, the authors aim to
optimize the process of identifying tyre parameters by applying machine learning techniques to the dataset’s
pre-processing with particular attention to clustering and anomaly detection algorithms. The process is
split into two phases: first, different clustering algorithms are applied to the tyre data to group similar
operating conditions; then, anomaly detection algorithms are applied to clustered data to recognize and
remove inconsistencies. Additionally, to objectively compare the proposed data processing results, the
preprocessed specifically acquired experimental data have been employed for the calibration of the reference
mathematical tyre formulation, comparing the deviations of the fundamental tyre-related quantities to
the previously identified tyre model, already validated in both offline and online scenarios. For the grip
coefficient evaluation versus both lateral and longitudinal slip variables, the Elliptic Envelope algorithm
shows to be the best anomaly detection algorithm while the One-Class Support Vector Machine technique
demonstrates lower deviations for the stiffness evaluation in both longitudinal and lateral directions.

INDEX TERMS Clustering, measurements, anomaly detection, nonlinear system calibration, outlier
detection, tyre-road interaction.

I. INTRODUCTION
With the widespread application of Information and Commu-
nication Technology (ICT) starting from the earliest phases
of the vehicle’s design, the ability to reproduce the system’s
behavior in the widest possible range of conditions of interest
has become crucial for the reduction of development time,
costs and risks [1], [2]. The heterogeneous environment
and harsh operating conditions of tyres frequently introduce
instability and unreliability into their performance [3].
Moreover, the ability to evaluate system parameters using
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real-time signals enables necessary improvements in control
systems and advances future smart mobility, considering not
only vehicle performance and safety but also overall grid
efficiency and environmental impact [4], [5]. In this scenario,
autonomous vehicles should become increasingly able to
preserve their maneuverability in a wider range of driving
conditions and environmental adversities, assuring that the
system’s state and run-time parameters are estimated with
good accuracy [6], [7], [8].
Initially, anomaly detection methods were employed in

fields such as cybersecurity and finance, later extending to
vehicle dynamics, where early techniques relied on statistical
models and signal processing to identify anomalies in
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sensor data like tyre pressure, vehicle accelerations or road
conditions [9], [10]. To this purpose, unsupervised machine
learning (ML) techniques such as autoencoders and K-means
can be applied to analyze complex tyre dynamics [11],
[12], facilitating the detection of subtle deviations in tyre
behavior, especially for evaluating adherence coefficient [13].
Furthermore, the rise of deep learning brought Recurrent
Neural Networks (RNNs) and Convolutional Neural Net-
works (CNNs) into the field, which can allow real-time
analysis of more complex data from state observers and
physical sensors, and improve the detection of patterns
related to friction loss [14], [15] although the noise and
dynamic environment poses several challenges in the train
and inference process of deep learning-based models [16].
Recent technological advancements, including connected

vehicles and the use of advanced tyre sensors [17], [18],
have further enhanced anomaly detection [19]. Integrating
data like weather conditions and road surfaces has boosted
predictive capabilities, helping identify potential issues
before they occur. Looking ahead, the continued evolution
of ML, coupled with autonomous systems, could lead to
vehicles capable of self-diagnosing and preventing tyre grip
loss, thereby significantly improving vehicle performance
and road safety [20], [21].

From a global perspective, the current state of ML
approaches to anomaly detection exhibits significant
challenges, particularly in unexplored domains like tyre
modeling: data representativeness with restricted gener-
alization capabilities [22], [23]; real-time computational
constraints struggling with high computational overhead
and multi-dimensional sensor data [24], [25]; black-box
ML techniques predominantly used in anomaly detection
lack transparent decision-making processes [26]; validation
limitations with inconsistent evaluation metrics and restricted
experimental environments [27], [28]. The studies available
in the literature about the application ofML to anomaly detec-
tion for vehicle dynamics mainly concern real-time and edge-
based applications [29]. This is an important area, especially
given the complexities of increasingly automated driving
systems, which integrate multiple sensing technologies, real-
time processing of large and heterogeneous sensor data under
strict energy consumption constraints, and the need for robust
safety and securitymeasures [30], [31]. On the other hand, the
current study leveragesML techniques not for direct real-time
anomaly detection as intended in the literature, but to explore
their potential in improving the estimation of key parameters
related to tyre-road interaction, such as tangential forces and
corresponding slips [32], [33]. Indeed, the primary aim of this
work is to evaluate whether ML algorithms can enhance the
identification of critical parameters of interest like stiffness
and grip, using raw acquired data [34], [35].
In this context, a major challenge regards the calibration of

non-linear systems, whose parameters may vary significantly
with the system’s state [36]. In the case of a vehicle,
tyres show a strong non-linear dependence on factors like

vertical force, road roughness, wear level, temperature
gradient, and slips [37]. However, an additional challenge to
identifying and modeling the multi-dimensional variability
lies in the poor accuracy of the tyre-road interaction data
when physical inconsistencies and outliers are present, thus
affecting outdoor testing scenarios [35], [38]. Indeed, the
presence of outliers, gaps, or errors in the dataset could
potentially jeopardize the calibration performance, leading
to model misidentification and the consequent unsuitability
for further applications concerning both offline and online
applications [34], [39], [40]. Once the testing methodology
and a specific set of sensors have been chosen, the goal is
to explore the tyre behavior in the widest possible operating
conditions to ensure a sufficiently representative dataset for
model calibration. Indeed, due to the intrinsic non-linearity
and the amount of additional multi-physical quantities to
be accounted for, the accuracy and robustness of the model
calibration are directly linked to the degree of completeness
and quality of acquired data.

Regarding vehicle dynamics, some approaches in the
literature rely on a model-based framework employing
Gaussian Process Regression to predict tyre properties [41] or
lateral forces [42]. Nevertheless, the complexity in modeling
non-linear and dynamic systems like tyre-road interaction
and the sensitivity of tyres to parameters strongly affect the
effectiveness of such approaches. As tyre-road interaction
estimation is a significant challenge in the literature as
underlined in [3], researchers have designed ML models
based on acceleration data to classify tyre tread wear [43] and
performances prediction [44], or to approximate nonlinear
tyre model for predictive control [45]. Nevertheless, the
non-linear behavior and measurement uncertainty affect the
effectiveness of the state-of-the-art approaches, demanding
more and more complex pre-processing strategies. To deal
with this complexity, the authors propose an unsupervised
approach to provide the essential data for an accurate tyre’s
model calibration process. Hence, the authors propose a data-
driven-based pipeline, in which cluster algorithms are firstly
applied to group samples with similar behaviors, and then
anomaly detection algorithms are used to unveil anomalous
behaviors of tyres.

For both indoor and outdoor experimental data, it is
necessary to define an outlier as an anomalous value within
a set of observations for the same input. However, scien-
tifically establishing a robust index is not trivial, especially
when the number of available samples is low. Moreover,
in single-variable observations, an outlier is a sample with a
surprisingly low or high value, while in multivariate datasets,
unexpected factors may arise from interrelationships between
variables.

To this purpose, the authors investigate the application
of established clustering algorithms (K-Means, K-Medoids,
GaussianMixtureModels, andHierarchical Clustering) to the
chosen reference model to identify similar force conditions
in the tyre-road contact plane. The resulting clusters are
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analyzed on tyre behavior curves using anomaly detection
techniques i.e., One-Class Support Vector Machine (SVM)
(OC-SVM), Isolation Forest (IF), Local Outlier Factor
(LOF), and Elliptic Envelope (EE)), followed by a physical
evaluation assessing characteristic points’ proximity to a
reference curve. Rather than proposing new methodologies,
this work focuses on systematically applying and evaluat-
ing existing clustering and anomaly detection techniques,
extensively analyzing and benchmarking, to formulate the
most effective approach for the specific domain of tyre-road
interaction anomaly detection.

Summarizing, the proposed analysis is mainly synthesized
in the following steps:

• different clustering algorithms (i.e., K-Means,
K-Medoids, Gaussian Mixture Models and Hierarchical
models) are fed as inputs to the Pacejka’s tyre model
for identifying similar kinematic-dynamic conditions
arising in the tyre-road contact area;

• different anomaly detection algorithms (i.e., OC-SVM,
IF, LOF, EE) are applied on top of the clustered data to
remove the undesired non-physical outliers;

• proposed approaches are benchmarked using a real-
world dataset, composed of measurements col-
lected through an experimental campaign using a
FIAT 124 RWD Spider vehicle mounting Toyo Porxes
R888R 196/50R16 at the Sele track, Italy.

The paper is organized as follows: in Section II a typical
problem regarding the necessity to heavily pre-process the
acquired tyre data is presented, investigating the causes and
proposing the solutions available in literature and industry.
In Section III-B, following the data cleaning and normaliza-
tion phases, different clustering algorithms are applied to tyre
data to group observations into different clusters to optimize
the model identification process. Section IV describes the
experimental campaign, reporting the vehicle parameters and
the main characteristics of the sensing equipment employed.
Section V presents the outcomes of the presented anomaly
detection algorithms applied to each data cluster, discussing
their benefits and comparing the identification accuracy of
the tyre-road interaction main quantities like stiffness and
maximum friction versus the ones of an already validated
tyre digital twin obtained by the authors for the same tyres
in previous work.

II. PROBLEM DEFINITION
The tyre data containing the required kinematic and
dynamic observations of the main variables of interest
(i.e.,thermodynamics, wear, pavement characteristics) are
commonly collected in indoor and outdoor scenarios. The
experimental protocol includes acquiring data employing
both indoor test rigs (e.g., drum [46], [47] or flat belt [48],
[49]) and outdoor sessions, considering the vehicle as a
moving lab [38], [50] or a dedicated trailer.
Indoor testing is preferred for its intrinsically con-

trolled and sensorized environment, where the deeply

inter-connected phenomena of the tyre behavior can be
decoupled thanks to the quality and accuracy of the acquired
signals and the possibility of designing the testing routine
according to the specific characterization purpose [51], [52].
The tyre typically spins in contact with a drum or a rolling
belt covered with steel or abrasive paper. At the same time,
different load and kinematic conditions are applied and
the resulting interaction forces and torques are measured.
However, indoor test procedures have several inherent
limitations. Firstly, the friction coefficient is evaluated by
imposing unstable operating conditions on the tyre, which
can be challenging to control due to the vibrations of
the belt-rim system, leading to an overestimation of the
adhesion coefficient. Secondly, tyres are not tested under
real working conditions, which are hard to reproduce in a
laboratory environment, since the belt roughness parameters
differ significantly from the real asphalt characteristics.

Gathering tyre data in real-world scenarios requires
outdoor testing, where the tyre faces dynamic conditions
by engaging with diverse road surfaces and environmental
scenarios [32]. Several methodologies, making use of Inertial
Measurement Units (IMUs), Global Positioning System
(GPS), sideslip sensors, wheel force transducers, encoders,
and sophisticated moving benches have been developed
for outdoor testing [33], [53], [54], [55]. With this aim,
several vehicle dynamic models [38], [56], confidential pro-
cedures [57], model-based filters [58], and advanced moving
lab-trailers [32], [59] have been designed to explore all
possible tyre operating conditions also in outdoor testing [60].
A key advantage is the ability to directly capture the complex,
nonlinear behaviors of tyre-road interactions specific to
certain pavement textures. Outdoor testing, in particular,
yields more realistic and reliable data, making it invaluable
for tyre modeling and simulation. However, outdoor testing
also has some disadvantages, such as the challenge of
controlling and measuring test variables, the high cost and
time required for the experiments, and the safety issues
related to the testing personnel and equipment, with a
specific focus on ensuring the quality and repeatability of
the results. In addition, in this context, it is often challenging
to ensure that the tyre operates near its limit conditions,
which is particularly valuable for calibration purposes. This is
especially relevant for parameters like the maximum friction
coefficient, or the forces and torques under pure conditions at
high slip angles [32], [61].

Be it an indoor or outdoor scenario, the minimum
necessary dataset consists of kinematic and dynamic data,
to represent the tyre-road interaction curves in the widest
range of tyre operating conditions, in terms of vertical
load, inflation pressure, slip angle, slip ratio, and inclination
angle [32], [62]. Advanced and more recent studies also
consider the road surface characteristics and the compound
viscoelastic properties, as well as temperature and wear
states, among the multidimensional independent variables to
account for to investigate and to model the tyre behavior [35],
[63]. Among the quantities to measure, a particular effort
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FIGURE 1. Tyre-road interaction data analysis and modeling.

lies in evaluating the tyre kinematics, since the only sensors
usually available consist of the wheel encoder to measure the
tyre’s angular velocity and a wire sensor to assess the steering
angle. The longitudinal and lateral slips, sr (or rSlip) and sa
(or aSlip) respectively, are defined as:

sr =
vx − ωReff

|vx |
,

sa = arctan
vy
|vx |

. (1)

where Reff is the tyre rolling radius, ω is the wheel
angular velocity, and vx and vy are the longitudinal and
lateral velocities of the tyre’s contact patch velocity. When
it comes to indoor testing, the above quantities can be
measured and parameterized with a reasonably high degree
of accuracy [51], [52]. In outdoor testing scenarios, the
velocity components of the wheel are typically measured
using dedicated sensors, such as optical [64] or IMU-
based [64] devices. These measurements are then kinemat-
ically transformed to the point of interest, usually the wheel’s
hub [38], while the wheel’s angular velocity is obtained using
specialized OEM encoders [65]. Additionally, knowledge of
the instantaneous wheel alignment, the equivalent normal
direction at the road contact patch, and the rolling radius
form the basis for evaluating tyre slips. Unfortunately, due
to various factors such as road conditions, tyre thermody-
namic and wear states, steering and suspension systems’
compliance, and environmental variations, analyzing tyre slip
during outdoor testing can lead to significant inaccuracies
[33], [54].

It is worth to note from Figure 1 that data pre-processing
is an essential step in building a reliable and accurate
model. One of the main tasks of data pre-processing is
to detect and remove outliers, which are data points that
deviate significantly from the rest of the data. Outliers can
have a negative impact on the model performance, as they
can introduce noise, bias, and distortion. Therefore, it is
important to apply appropriate methods for outlier detection
and removal before feeding the data to the model. This way,
the model can learn from a clean and representative data set,
and achieve better robustness and accuracy.

Among the tyre formulations, to physically transform
the kinematic signals in dynamic data, Pacejka’s Magic
Formula (MF) model has been preferred as it offers a
remarkable compromise between accuracy and robustness
in real tyre representation and quite low computational
effort, which makes it particularly suitable for both real-time
driving simulations and for offline performance optimization
algorithms.

The analytical expression of the MF mathematical model
has been defined according to [35], [66]:

y(x) = D · sin
[
C · arctan

{
B·x−E ·

(
B · x−arctan(B · x)

)}]
(2)

with

Y (x) = y(x) + Sv,

x = X + Sh (3)

where Y (x) is a dynamic output (Fx , Fy or Mz), X is the
kinematic input (slip ratio sr or slip angle sa defined in
Equation (1), B is the rigidity factor, C is the shape factor,
D is the peak value, E is the bending factor, Sv and Sh are the
vertical and horizontal shifts, respectively.

The above six quantities are the MF macro-coefficients,
defining Pacejka’s curve shape. Each macro-coefficient is
itself a polynomial (linear, quadratic, trigonometric, exponen-
tial) function of the tyre’s kinematic and dynamic variables,
combining several micro-parameters without a clear physical
meaning (Figure 2a). Equation (2) describes only the pure
conditions, which can be extended to the combined ones,
introducing the ‘‘hill function’’G defined in Equation (4) and
represented in Figure 2b) [35], [66]:

G =
cos

(
C ·arctan(B · x−E · (B·x−arctan(B·x)))

)
cos

(
C ·arctan(B · Sh,x−E ·(B · Sh,x−arctan(B·Sh,x)))

)
(4)

III. PROCESSING METHODOLOGY
The proposed methodology shown in Figure 3 aims to
optimize tyre’s parameter identification by using machine
learning approaches, focusing on two phases: clustering
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FIGURE 2. Pacejka’s Magic Formula tyre model [66].

FIGURE 3. End-to-end methodology composed of four steps. After the
acquisition, data undergo cleaning and standardization operations before
clustering observations into homogeneous groups. Finally, several
algorithms are applied to unveil anomalies in each cluster.

algorithms group similar operating conditions, followed by
anomaly detection to eliminate inconsistencies within the
clustered data. After performing a series of pre-processing
operations (i.e., cleaning and standardization), different
clustering algorithms are applied to tyre data to group
similar observations into separate sets, which will later be
investigated to estimate the tyre’s parameters.

A. DATA INGESTION
For most car and tyre manufacturers, an instrumented vehicle
is a more commonly used testing tool than test trailers. This
preference is driven by the lower cost of utilizing commer-
cially available vehicles fitted with sensors and instruments,
which can bemodified as required. This approach was chosen
primarily for its cost-effectiveness, despite the understanding

that, even when properly employed, it offers lower setup
accuracy than trailer testing.

B. DATA PRE-PROCESSING
Measurement data can be incomplete, duplicated, or out of
range, therefore they need to be pre-processed to make them
suitable for the analysis. After removing duplicated data,
missing values are imputed through linear interpolation, and
each feature is standardized [67] so that all of them have the
same numerical scale and ensure that each one is weighted
equally by the clustering algorithm.

C. CLUSTERING
In this section, we describe our clustering strategy aims to
group samples with similar behaviors. A cluster analysis
is performed to group similar observations of the input
variables so that detection and labeling of anomalies in
the output variables can be executed on homogeneous sets
of observations for the subsequent tyre model identifica-
tion. The authors have chosen four clustering algorithms
based on the classification provided in [68]: K-Means and
K-Medoids [69], and GaussianMixture [70], belonging to the
partitional class; Agglomerative Hierarchical algorithm [71]
representing the hierachical class.

D. ANOMALY DETECTION
In the past decade, the pervasive integration of ICT in several
industrial environments has made it possible to harvest a
large amount of data, whose processing can support a variety
of tasks [72]. Furthermore, data quality can strongly affect
the effectiveness of approaches [73], leading researchers and
practitioners to focus on designing approaches for anomaly
detection [74], which is an unsupervised learning task aiming
to detect anomalous behavior in historical data [75], most
times showing as outlier observations. As shown in [76],
outliers in time series can have two different meanings:
1) they can be related to noise, erroneous, or unwanted data,
which are not interesting to the analyst; 2) they represent
unusual but interesting phenomena which are useful to detect
and study. To identify anomalies, the authors have used four
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unsupervised algorithms, that represent the most widely used,
as underlined in [77], [78]:

• One-Class Support Vector Machine (OC-SVM).
The OC-SVM [79], [80] anomaly detection algorithm
relies on SVM, a classification algorithm that aims
to maximize the margin [81], defined as the distance
between the separation hyperplane (decision boundary)
and the training samples closest to the hyperplane,
named support vectors. Once the best hyperplane sep-
arating the two classes has been identified, observations
are reprocessed with a sign function that labels the
observations as +1 or −1 depending on where they are
relative to the hyperplane, separating the normal from
the anomalous values. Under unsupervised setting, the
algorithm groups observations near the origin into one
class, while assigning the remaining observations to a
different class. One of the main reasons why the SVM is
widely used is that you can use the kernel trick based
on the radial-basis function for observations that are
not linearly separable: those data can be separated by
transforming features into a higher-dimensional space
using the kernel which is easier and faster than a
mapping function. In this way, data will be linearly
separable through a hyperplane in the new space.

• Isolation Forest (IF). The IF [82], [83] relies on
the idea that anomalies are few and different and,
therefore, they are more susceptible to isolation than
normal observations. A tree structure can help isolate
each observation more effectively. Anomalies will be
in the leaf nodes closest to the root node of the tree
due to their susceptibility to isolation, while normal
observations will be isolated in the leaf nodes farthest
from the root node. The procedure through which the
algorithm isolates anomalies starts by building binary
isolation trees (iTree) to partition all the elements of the
dataset. Partitions are generated by selecting a random
feature of the dataset and a random value between the
minimum and maximum of the feature. Hence, isolating
a normal observation is more challenging and requires
more partitions compared to isolating an anomalous
point. To improve the quality of the algorithm, a forest
of binary trees is created. Once the entire dataset is
partitioned, the observations are reviewed within the
forest, and an anomaly score, normalized to the number
and depth of trees, is used to label observations as normal
or anomalous.

• Local Outlier Factor (LOF). The LOF [84] evaluates
the local density around each observation and compares
it with the local density of its nearest neighbors.
A point with a significantly lower local density than
its neighbors will have a higher LOF value, which
makes that observation a possible anomaly. Given
a point, the algorithm computes its distance to the
k nearest neighbors, which is subsequently used to
determine its local reachability distance. Next, the local

reachability density is calculated as the inverse of the
local reachability distance, and then the LOF score is
calculated. If the score is less than 1, the observation has
a higher density than neighbors and can be considered
normal; if the score is greater than 1, the observation can
be considered as an anomalous value.

• Elliptic Envelope (EE). The EE [85], [86] models data
through an elliptic distribution, labeling all elements that
fall outside the ellipsoid as anomalies. The algorithm has
two steps: in the first one, it tries to find the best fit of a
multivariate ellipsoid to the data, optimizing the center
of the ellipsoid and the covariance matrix so that the
sum of the quadratic errors between the dataset points
and the ellipsoid itself is minimized. In the second one,
observations are evaluated according to their distance to
the ellipsoid, and elements falling outside the ellipsoid
are considered anomalies.

IV. EXPERIMENTAL ANALYSIS
In this section, the experimental protocol designed to evaluate
the presented data pre-processing approach is presented.
Specifically, first a discussion of the experimental dataset
characteristics is introduced in Section IV-A, then the
measures of validity and error metrics are illustrated in
Section IV-B, which are then adopted in Section IV-C to
evaluate the identification results regarding the tyre model
parameters.

A. DATASET
The experimental campaign was conducted on the Battipaglia
circuit, in the context of SeaSide Racing 2023, in dry
conditions with boundary 22 ◦C and 25 ◦C for air and track
temperatures, respectively. A fully equipped FIAT 124 RWD
Spider mounting Toyo Proxes R888R 195/50R16, which
had been tested in indoor conditions beforehand, was
employed as the testing vehicle to acquire the data samples
required to reconstruct the tyre-road interaction curves
represented in Fig. 1. The key vehicle’s features are listed in
Table 1.
The vehicle was equipped with advanced sensors to

measure acceleration, velocity, force, and tyre temperature.
The measurement systems and individual sensors of greatest
interest were a dynamometer hub, a non-contact vehicle
speed sensor, and an onboard computer to guarantee the cor-
rect functioning of all the devices and the consistency of all
the collected experimental data. The complete measurement
setup is reported in Table 2, also providing sensors’ accuracy
specifications.
Telemetry data were processed in Matlab as described

in [38] to return the quantities of interest for each tyre: slip
angle sa, slip ratio sr , camber angle γ , vertical force Fz,
longitudinal force Fx and lateral force Fy. Lateral µy =

Fy/Fz and longitudinal µx = Fx/Fz grip values were also
calculated.
Missing (NaN) and infinite values occasionally encoun-

tered in the dataset due to sensing and logging singularities,
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TABLE 1. Main characteristics of the vehicle.

TABLE 2. Acquired signals and sensors’ accuracy specifications.

were identified and imputed by linear interpolation of the
two closest values to guarantee the time continuity of all
data channels of interest, directly measured and estimated,
respectively. Those values were considered as anomalies
in the following steps. Finally, as requested by clustering,
each input variable xi was standardized to zi, according to
Equation (5):

zi =
xi − x̄i
si

, (5)

where x̄ and si are the sample mean and standard deviation,
respectively.

Furthermore, the four clustering algorithmswere applied to
data from each tyre to unveil similar behaviors in terms of the
tangential force on which anomaly detection algorithms have
been applied to identify samples that differ from the normal
ones.

B. MEASURES OF VALIDITY AND ERROR METRICS
To assess the effectiveness of the anomaly detection, several
indices [87], [88] including the Elbow Curve, the Silhouette
score, the Calinski-Harabasz, the Davies Bouldin, the Dunn,
the C-Index, and the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are adopted.

• Elbow Curve. The Elbow Curve [89] is a commonly
used visual method for determining the optimal number
of clusters in clustering algorithms, particularly in k-
means clustering. The method is based on plotting a
metric called inertia, which measures how tightly the
data points are grouped within each cluster. Hence,
inertia measures the compactness of the clusters—the
lower the inertia, the closer the data points are to their
respective centroids. Specifically, inertia is defined as
the sum of squared distances between each data point
and the centroid of its respective cluster.Mathematically,
inertia is represented according to Equation 6:

inertia =

n∑
i=1

k∑
j=1

I(xi ∈ Cj) · ∥xi − cj∥2 (6)

where: n is the number of data points, k is the number of
clusters, Cj is the set of points in cluster j, xi represents a
data point, cj is the centroid of cluster j, I is an indicator
function that equals 1 when xi belongs to cluster Cj and
0 otherwise.
The Elbow Curve plots inertia on the y-axis against the
number of clusters (k) on the x-axis. As the number
of clusters increases, inertia decreases because the
data points are partitioned into smaller, more localized
groups. However, after a certain number of clusters,
the rate of decrease in inertia slows down significantly.
This point, known as the elbow point, represents a
balance between reducing inertia and avoiding excessive
complexity (i.e., having too many clusters). The elbow
point is considered the optimal number of clusters,
beyond which additional clusters provide diminishing
returns in terms of improved clustering quality.

• Silhouette score. The Silhouette score [90] is a widely
used metric for evaluating the quality of a clustering
solution by measuring how similar an object is to
its cluster compared to other clusters. It provides a
comprehensive evaluation of both cohesion (how closely
related points in the same cluster are) and separation
(how well clusters are distinguished from each other).
The Silhouette score for each data point is calculated
according to Equation (7):

S(i) =
b(i) − a(i)

max(a(i), b(i))
(7)

where: S(i) is the Silhouette score for data point i, a(i)
is the average distance between i and all other points
in the same cluster (within-cluster cohesion), b(i) is the
lowest average distance between i and points in any
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other cluster, which is the nearest neighboring cluster
(between-cluster separation).
The Silhouette score ranges from −1 to 1:
– a score close to 1 indicates that the data point is well

clustered, with its cluster being highly compact and
well-separated from other clusters.

– a score around 0 suggests that the data point lies
near a cluster boundary, making it difficult to assign
definitively to one cluster.

– a score close to -1 indicates that the data point might
have been assigned to the wrong cluster, as it is
closer to a different cluster than to its own.

The overall Silhouette score for a clustering solution is
the average of the individual scores for all data points.
A higher average Silhouette Score indicates better-
defined, well-separated clusters.

• Calinski-Harabasz index. The Calinski-Harabasz
index (also known as the Variance Ratio Criterion)
[91] is a widely metric for evaluating the effectiveness
and quality of clustering outcomes. It evaluates the
ratio of the sum of between-cluster dispersion to
within-cluster dispersion, offering insight into how
well the clusters are separated and compact. A higher
Calinski-Harabasz score indicates more distinct and
well-separated clusters, signifying better clustering
performance.
The formula for the Calinski-Harabasz index is given in
Equation (8):

CH Index =
tr(Bk )/(k − 1)
tr(Wk )/(n− k)

(8)

where: tr(Bk ) is the trace of the between-cluster dis-
persion matrix, tr(Wk ) is the trace of the within-cluster
dispersion matrix, n is the number of data points, k is the
number of clusters.
The index evaluates clustering quality by balanc-
ing intra-cluster variance, which measures compact-
ness within clusters, and inter-cluster variance, which
assesses separation between clusters. Higher values
means more distinct and well-defined clustering struc-
tures.

• Davies-Bouldin index. The Davies-Bouldin index [92]
is a clustering evaluation metric that measures the
quality of a clustering solution by examining both the
compactness of clusters and the degree of separation
between them. It is designed to assess how well the
clusters are formed and separated from each other.
A lower Davies-Bouldin index value indicates better
clustering performance, where the clusters are more
compact and better separated.
The Davies-Bouldin index is computed using the
Equation (9):

DB Index =
1
k

k∑
i=1

max
j̸=i

(
si + sj
dij

)
(9)

where: k is the number of clusters, si is the average
distance between each point in cluster i and the centroid
of that cluster (a measure of intra-cluster dispersion or
compactness), dij is the distance between the centroids
of cluster i and cluster j (a measure of inter-cluster
separation).
For each cluster i, the index calculates the similarity
between cluster i and the cluster j that is most similar
to it (in terms of a combination of compactness and
separation). The overall Davies-Bouldin index is the
average of these ‘‘worst-case’’ similarity scores across
all clusters.
The main goal of the Davies-Bouldin index is to
minimize the intra-cluster distances (making clusters
more compact) and maximize the inter-cluster distances
(ensuring well-separated clusters). Lower values of the
index indicate that the clusters are dense and far apart,
implying better clustering performance.

• Dunn index. The Dunn index [93] is a clustering
evaluation metric that aims to identify clustering
solutions where the clusters are well separated and
internally compact. It evaluates both the intra-cluster
compactness and inter-cluster separation, rewarding
clustering solutions where the distance between clusters
is large, and the points within clusters are closely
packed.
The Dunn index is defined according to Equation (10):

D Index =
min1≤i<j≤k δ(Ci,Cj)
max1≤l≤k 1(Cl)

(10)

where: k is the number of clusters, δ(Ci,Cj) is the
distance between the two most similar clusters Ci and
Cj (inter-cluster separation), 1(Cl) is the maximum
intra-cluster distance in cluster Cl , which measures the
compactness of the cluster.
The numerator δ(Ci,Cj) represents the smallest distance
between two clusters (i.e., the minimum distance
between any two clusters, encouraging larger inter-
cluster separation), while the denominator 1(Cl) cap-
tures the largest intra-cluster distance (i.e., the size of
the least compact cluster). A higher Dunn index value
indicates better clustering, where clusters are far apart
and points within each cluster are tightly grouped.
The Dunn index is particularly useful for detecting
well-separated, compact clusters and is sensitive to
outliers. Higher Dunn index values reflect better clus-
tering performance, meaning that both the separation
between clusters and the compactness within clusters are
optimized.

• C-Index. The C-Index [94] is a clustering evaluation
metric that measures the quality of a clustering solution
by comparing the total intra-cluster distances with the
best and worst possible total intra-cluster distances for
the given dataset. It assesses how well the clustering
solution minimizes the distance between objects within
the same cluster.
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The C-Index is defined according to Equation (11):

C =

∑n
i=1 d(i) − Smin

Smax − Smin
(11)

where: n is the number of intra-cluster pairs (pairs of
points within the same cluster), d(i) is the distance
between each pair of points within the same cluster, Smin
is the sum of the distances for the n smallest pairwise
distances in the entire dataset (representing the best-
case clustering, where all closest points are in the same
cluster), Smax is the sum of the distances for the n largest
pairwise distances in the entire dataset (representing the
worst-case clustering, where the most distant points are
in the same cluster).
The C-Index ranges from 0 to 1:
– A value close to 0 indicates that the intra-cluster

distances are near the minimum possible, meaning
that the clustering is well compact.

– Avalue close to 1 indicates that the intra-cluster dis-
tances are near the maximum possible, signifying
poor clustering quality.

The C-Index is particularly useful when comparing the
clustering result with an ideal scenario (minimizing
intra-cluster distances). Lower values of the C-Index
suggest better clustering performance.

• Akaike and Bayesian Information Criterion. The
Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) [95] are model selection
criteria used to evaluate the quality of a clusteringmodel.
These criteria are based on the likelihood of the model
given the data, but they incorporate penalties to account
for model complexity, thus helping to avoid overfitting.
The AIC assesses a model’s goodness-of-fit while
incorporating a penality score for the number of
parameters in order to mitigate the risk of overfitting.
In the context of clustering, AIC is used to compare
different models (e.g., different numbers of clusters) by
balancing the model’s fit to the data and its complexity.
The formula for AIC is shown in Equation (12):

AIC = 2k − 2 ln(L) (12)

where: k is the number of clusters, L is the likelihood of
the model given the data (typically equals to the inertia.
A lower AIC score indicates a model that provides a
good fit to the data while using fewer clusters. However,
AIC tends to favor more complex models than the BIC.
The BIC, like AIC, evaluates model quality by balancing
fit and complexity, but it imposes a stronger penalty
for model complexity. BIC is particularly useful when
trying to select a model that generalizes well to unseen
data. The formula for BIC is shown in Equation (13):

BIC = ln(n)k − 2 ln(L) (13)

where: n is the number of data points.
BIC includes a logarithmic term, ln(n), which results in
a harsher penalty for additional parameters compared

to AIC, making it more conservative when selecting
models. A lower BIC score indicates a bettermodel, with
a preference for simpler models that avoid overfitting.
To summarize, AIC is less stringent about penalizing
model complexity and may prefer models with more
clusters, potentially allowing for more flexible or
complex cluster structures, while BIC, being more
conservative, tends to select models with fewer clusters,
often favoring simpler models that are more likely to
generalize well to new data.
Both AIC and BIC can be used to determine the
optimal number of clusters in clustering algorithms,
by comparing models with different cluster numbers and
selecting the one with the lowest AIC or BIC score.

Applying the chosen model identification routine to the
above-processed datasets, the results are then compared
through the Mean Absolute Percentage Error (MAPE) [96],
a statistical index able to express the estimation error as a
percentage, defined in Equation (14). Among the defining
characteristics and the reason for the choice, it is highlighting
the MAPE’s intrinsic scale-independence, being suitable to
be applied to datasets with varying units and scales, such
as the ones concerning the vehicle dynamics and the tyre
mechanics (i.e. grip, slip, force, etc) as already presented in
similar studies [61], [97], [98].

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , (14)

where yi represents the measurement and ŷi is the predicted
value for a variable y, both not requiring the assumption of
normality [96].

C. HYPERPARAMETERS OPTIMIZATION
In this section, we describe the hyperparameters optimiza-
tion made for clustering techniques and anomaly detec-
tion approaches. Before applying the K-Means and K-
Medoids [69], Gaussian Mixture [70], and Hierarchical [71]
clustering algorithms on each corner, it was necessary to
choose the optimal number of clusters. The authors evaluate
their effectiveness in terms of cohesion and separation of
clusters by using the Elbow Curve, the Silhouette score,
the Calinski-Harabasz, the Davies Bouldin, the Dunn, the
C-Index, and the AIC and BIC [95]. Those indices are also
used before clustering to choose the optimal number of
clusters.

Each index returned a certain value corresponding to the
algorithm and the corner to be analyzed, and for each corner
and each algorithm, the number of clusters is represented in
Table 3.

The next step was to validate the algorithms used with
the Calinski-Harabasz, Davies Bouldin, Silhouette, Dun, and
C-Index indices. For most indices, the algorithmwith the best
value is the K-Means for both front – with four clusters –
and rear – with six clusters – wheels. The difference in the
number of clusters is because the vehicle is rear-wheel drive,
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TABLE 3. Number of clusters for each algorithm and each corner once
the optimization phase is completed.

TABLE 4. Hyperparameters for each anomaly detection method once the
optimization phase is completed.

and therefore the rear wheels are stressed more than the front
ones.

Hyperparameters optimization of the anomaly detection
algorithms was carried out through graphical representations,
identifying the parameters shown in Table 4.

V. RESULTS
In this section, the outcomes of the anomaly detection
algorithms applied to each cluster of each dataset are
discussed. Results are represented through the curves of the
derived variables (i.e., lateral and longitudinal grip) vs. slips.
Specifically, some outcomes of the above-described analysis
related to front-right (FR) corner are shown in Figure 4
and Figure 5, for the lateral and longitudinal interaction,
respectively.

In addition to the anomalies detected by the algorithms,
also the ‘NaN’ and infinite values initially identified have
been considered as such. The anomalies identified for
each corner were corrected by linear interpolation on all
the telemetry channels. To assess the performance of the
techniques, an identifier was designed to track the parameters
of five telemetry datasets—each corresponding to a specific
anomaly detection algorithm—as well as the unprocessed
telemetry data. This identifier was used to calculate devia-
tions from the target parameters, which were defined at the
start of the simulation and represented the characteristics of
the tyre being analyzed. The deviations were evaluated under
three distinct conditions: pure longitudinal, pure lateral, and
combined. The MAPE was employed as the error metric.
In Table 5, it can be seen how the identified parameters of
the EE technique have the smallest deviation from the target
parameters compared to the other algorithm.

TABLE 5. tyre-road interaction deviations of the identified coefficients.

TABLE 6. Pure lateral interaction parameters evaluation.

TABLE 7. Pure longitudinal interaction parameters evaluation.

To evaluate the physical characteristics of tyre behavior,
the previously identified parameters were re-simulated under
pure lateral and pure longitudinal conditions to obtain the
lateral and longitudinal grip curves as a function of the slips.

Some fundamental points were taken into consideration
for each curve: the stiffness value, which identifies the angle
of inclination of the linear section, the maximum values of
the lateral and longitudinal grip, and the slip values at the
maximum andminimum values of the lateral and longitudinal
grip (see Figs. 6 and 7).

To analyze the physical phenomenon, the deviations of
the characteristic points of the simulated curves from the
target were assessed using the MAPE metric. As shown
in Table 6, under pure lateral conditions, the curve most
closely matching the target parameters is the one simulated
using the telemetry parameters corrected with the OC-SVM
method. Instead, as shown in Table 7, under pure longitudinal
conditions, the curve that best matches the target parameters
varies depending on the analysis criteria. When examining
the maximum and minimum longitudinal grip values, the
closest match is achieved using the parameters determined
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FIGURE 4. Anomaly detection by ML algorithms (lateral interaction).

FIGURE 5. Anomaly detection by ML algorithms (longitudinal interaction).

FIGURE 6. Pure lateral interaction.

FIGURE 7. Pure longitudinal interaction.

from telemetry corrected with the OC-SVM. However, when
analyzing stiffness and slip values at the maximum and

minimum, the curve most closely aligns with the target
parameters when using the telemetry corrected with the IF.
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TABLE 8. Stiffness evaluation.

Finally, the majority of the state-of-the-art approach focus
on classifying tyre tread wear [43], which presents challenges
due to the difficulty in defining an appropriate number
of classes. Relying on predefined classes can also limit
the effectiveness of the detection of tyre wear since it
struggles to capture the complex and nonlinear dynamics
of tyre-road interactions, which significantly influence tire
consumption. In turn, the proposed approach first applies
clustering algorithms to group samples with similar behaviors
without establishing a previous number of classes, followed
by anomaly detection techniques to identify and analyze tire
behaviors that deviate from the norm.

VI. CONCLUSION
This paper has comprehensively analyzed the challenges
of observing and understanding multi-dimensional tyre-
related data. The authors have highlighted the critical
importance of data quality as a necessary starting point for the
tyre’s model calibration, shedding light on the complexities
involved in defining outliers within both univariate and
multivariate datasets and emphasizing the need for a scientific
investigation of the approaches able to identify and mitigate
anomalies.

Following the data pre-processing phase, aimed at remov-
ing duplicated data and assuring temporal continuity of
all the acquired signals, different clustering approaches
are discussed and applied to group observations based on
tyre-related features such as maximum friction coefficient
and stiffness variations. Four different clustering algorithms
(i.e., K-Means, K-Medoids, Gaussian Mixture, and Hierar-
chial) were chosen and compared. To identify anomalies,
four unsupervised algorithms (i.e., One-Class Support Vector
Machine (SVM or OC-SVM), Isolation Forest (IF), Local
Outlier Factor (LOF) and Elliptic Envelope (EE)) have been
employed.

Results have shown that applying K-Means to identify
similar conditions of forces is the most efficient way to
differentiate the anomalies identified in the diverse conditions
of grip and, therefore, the behavior of the tyre. Following the
clustering phase, where the K-Means method was preferred,
the results showed that all detection algorithms of anoma-
lies employed correctly identify anomalous observations.
It should be highlighted that the corrections carried out
through linear interpolation on anomalies identified have

been applied to all telemetry channels and are fundamental
in bringing these values back to the ‘‘normal observability
range’’. Hence, our methodology improves the identification
of anomalies related to tyre-road interaction phenomena by
reducing the noise introduced by sensor measurements and
the misestimate of vehicle-tyre parameters. Furthermore, the
proposed approach identifies anomalies without establish-
ing a previous number of classes. This demonstrates the
efficiency of identifying tyre characteristics using a tyre
reference model for validation. By utilizing and comparing
different clustering approaches, we have been able to focus
subsequent anomaly detection studies on a subset of data
related to tyre behavior that better describes the expected
normality.

To objectively compare the data processing results, the
authors have employed the resulting ‘‘corrected’’ datasets for
the calibration of the tyre model, comparing the deviations
in terms of fundamental tyre-related quantities towards the
previously identified tyre model, already validated in offline
and online scenarios. In this case, the Elliptic Envelope
technique resulted to be the best anomaly detection technique
for the grip coefficient evaluation, whereas the One-Class
Support Vector Machine technique shows lower deviations
for the stiffness evaluation in both longitudinal and lateral
directions.

Some limitations pertain to the proposed analysis. One
challenge concerns the complexity of identifying normal
behavior and choosing suitable thresholds that require a large
amount of data. Sensor measurement uncertainty can further
affect the effectiveness of the proposed approach. To mitigate
these limitations, the authors underline the relevance of
collecting and processing robust data during the proposed
analysis.

Future work should focus on refining the methodologies
for outlier detection and data quality assessment and
expanding the range of operating conditions under which tyre
behavior is analyzed. By continuing to address the challenges
outlined in this paper, researchers and practitioners can
further improve the fidelity of tyre-road interaction models.
This, in turn, will facilitate the development of advanced
driver-assistance systems and autonomous vehicles, ensuring
that the safety and performance of road transportation
continue to progress in the years to come.
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