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Abstract Understanding and accurately reproducing
the realistic response of rubber materials to external
stimuli is a crucial research topic that involves all the
engineering fields and beyond where these materials
are used. This study introduces an innovative nonlin-
ear fractional derivative generalized Maxwell model
designed to effectively capture and replicate the exper-
imental behavior of viscoelastic materials. The pro-
posed model addresses the limitations observed in con-
ventional fractional models, providing greater versatil-
itywhichmakes itmore suitable for describing the intri-
cate behavior of polymericmaterials. Through rigorous
mathematical validation, the proposed model demon-
strates coherence with the underlying physics of the
viscoelastic behavior. To address the identification pro-
cedure, the pole-zero formulation is adopted, employ-
ing a multi-objective optimization to obtain the opti-
mum, able to replicate the dynamic moduli trends. Sat-
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isfying results have been validated over a wide dataset
of 10 different materials, demonstrating an extended
capability of adapting to different variations than clas-
sical widely-used fractional models. Furthermore, the
model has proven to be valid even employing a reduced
amount of experimental data limited only to low, high-
frequency plateaus and around the glass transition tem-
perature, which could be fundamental for optimizing
resources in experimental investigations.

Keywords Polymers · Viscoelastic modeling · Frac-
tional derivative approach · Material characterization ·
Analytical demonstration · Nonlinear modeling

1 Introduction

Viscoelastic materials, characterized by their distinc-
tive combination of viscous and elastic properties under
mechanical stresses, have become integral components
across a wide spectrum of applications due to their ver-
satile nature. Besides the biomedical field [1,2], in civil
applications [3] and for aerospace structures and indus-
trial machinery [4–6], these materials assume relevant
importance also in the mobility sector, since especially
the tires, representing the only interface between vehi-
cles and roads, strongly influence vehicles’ handling,
safety, fuel efficiency, and environmental impact crite-
ria [7,8].

The dynamic behavior of structures that use rubber
materials can be especially valuable to know both in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-10175-z&domain=pdf
https://orcid.org/0000-0002-9392-0011
https://orcid.org/0009-0005-5933-1677
https://orcid.org/0009-0004-2761-2717
https://orcid.org/0000-0001-7326-8735


A. Sakhnevych et al.

the early stages of product design and during its use
and aging. A reliable model can help with simulation
analysis and predicting how a product with a specific
material will act in certain solicitation and temperature
conditions, considering both geometric and structural
characteristics [9]. A proper physical and mathemati-
cal model can be fundamental to conducting accurate
Finite Element Analysis (FEA) and Complex Eigen-
values Analysis (CEA) for structures with polymeric
elements, where a purely elastic model can become
insufficient [10,11]. Furthermore, realistic models of
materials can be employed to monitor the behavior of
existing products throughout their whole life cycle and
make reliable forecasts of their performance taking into
account their mutuating performance due to aging or
other factors.

In this context, an ongoing challenge that this study
aims at proposing concerns the optimal mathematical
formulation for the representation of the viscoelastic
material’s behavior, relying on a reduced number of
model parameters which can be calibrated on a limited
number of data samples, in a frequency (or tempera-
ture) range, more or less restricted partial data, depend-
ing on the testing equipment employed for the acquisi-
tion.

The experimental data represent the basis for devel-
oping these viscoelastic materials models which could
prove very useful and essential in different applica-
tions. The characterization of rubber materials can be
conducted in different ways: static tests, making use of
static or quasi-static application of loads or deforma-
tions, and non-stationary tests which can be classified
according to whether they are conducted in the time or
frequency domain [12]. Specifically, time-based proce-
dures are also known as transient testing because they
involve the application of a deformation or load (elon-
gation or shear) to the material that varies over time
and the analysis of its response. These include impact
tests, creep experiments, and stress-relaxation experi-
ments. Frequency-based procedure are usually referred
to as dynamic tests and include techniques such as
the Dynamic Mechanical Analysis (DMA) [13], which
involves soliciting the material sample with frequency-
varying stress or strain and measuring the magnitude
and phase of the resulting frequency response to define
intrinsic characteristics moduli. These methodologies
are usually destructive, but innovative tools capable of
non-destructive conducting fast and accurate dynamic
testing of polymeric materials in a non-invasive way

are also emerging, such as the VESevo device able to
evaluate in a non-destructive way the viscoelastic char-
acteristics of a finished product (i.e. tires), by studying
the dynamics of a free bouncing rod [14].

From a mathematical point of view, the most com-
mon approach to defining a viscoelastic constitutive
law consists of using linear differential models based
on Boltzmann’s superposition principle [15], which
provides an integral representation of linear viscoelas-
ticity, that represents an alternative to the differential
form [16]. The linear models are a combination of two
kinds of mechanical elements, a perfect elastic spring,
describing the elastic part of the viscoelastic behavior,
and a perfect viscous dashpot, which reproduces the
hysteretic response. The stress and the strain are linked
through linear differential equations whose complexity
depends on the number of elements. Basic models, like
the Maxwell or the Kelvin–Voigt (KV), are described
by simple equations, but they fail at representing creep
and relaxation phenomena, respectively, even though
they remain locally efficient within small frequency
ranges. To overcome these limits and to formulate an
approach capable of describing the viscoelastic behav-
ior in a wide range of frequencies and time scales, com-
binations of Maxwell or KV elements, in series or par-
allel, can be used, obtaining the generalized Maxwell
or KVmodels [17]. However, the complex constitutive
equations of these approachesmake use of a large set of
parameters, which are hard to determine, making their
use impractical. For this reason, an alternative repre-
sentation of polymeric materials is gaining prominence
in various applications, namely the fractional models,
which, by replacing the dashpots with new elements,
the spring-pots, allow a more accurate representation
of the viscoelastic behavior with a reduced number of
parameters, even in awider range of excitation frequen-
cies [18].

The introduction of fractional elements to accurately
reconstruct the rheological behavior of rubber materi-
als is a very widespread research topic in the literature
in numerous fields of application [19–23]. In the con-
text of the mechanics of solids, many dynamic prob-
lems have been studied making use of fractional cal-
culus, as described in the detailed review by Shitikova
[24]. In [25] the authors demonstrate that fractional
derivativemodels performbetter than than integer order
ones in reproducing the behavior of biological tissues.
Use in the food sector is also common, comprehend-
ing liquid food solutions [26], food gels [27], and food
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additives [28]. Other studies demonstrate the ability of
the fractional model to reproduce the dynamic moduli
trend ofmagnetorheological elastomerswith frequency
[29,30].

However, no unique methodology exists to iden-
tify the optimal set of model parameters to adequately
reproduce viscoelastic behavior; indeed, the calibra-
tion procedures range from genetic algorithm methods
[31,32], to curve fitting methods [33,34] or numerical
optimization techniques [35,36]. Furthermore, these
models are often validated in specific simulation envi-
ronments on ideal materials or towards experimental
data limited in a narrow frequency range. Contrary
to the above limitations, this work aims to verify the
robustness of the results employing experimental data
acquired through the DMA technique available over a
vast range of frequencies. In particular, following the
approach introduced by Renaud et al. in [37] and also
used by Genovese et al. in [38], the pole-zero formula-
tion, in the case of the GM model, has been employed,
considerably reducing the computation complexity of
the calibration procedure. The limit of the above mod-
els, however, regards its intrinsic linearity which does
not always allow an adequate description of the vis-
coelastic behavior of materials, especially when the
exciting stress becomesmore significant or the solicita-
tion frequencies are higher.Different sources determine
a non-linear response of polymers, including aging,
strain softening, and annealing, which have been taken
into account in some studies through non-linear ele-
ments (masses or dashpots) [39,40]. Jrad et al. in [41]
studied a generalizedMaxwell model with a non-linear
spring and a predetermined number of linear Maxwell
cells proving its ability to accurately reproduce the
modulus and phase of the complex viscoelastic modu-
lus, albeit in a narrow frequency range.

This work proposes an improved formulation for the
mathematical description of the viscoelastic materials’
behavior making use of the existing fractional models
with an addition consisting of an isolated elastic ele-
ment with a frequency-varying stiffness, validating the
results over an extensive set of materials. This model
demonstrates an improved description of the viscoelas-
tic properties at both low and high frequencies and over
an extensive time scale, which was a common problem
with the conventional linear models, especially for the
storage modulus curves, as can be seen in an example
of application in Fig. 1 for a compound demonstrat-
ing a considerable variability at low frequencies with a

marked double slope in the viscoelastic region, as can
be seen around 107 rad/s frequency.

Another common problem, common in the calibra-
tion of fractional models and addressed by the authors
regards the definition of a multi-objective optimization
routine, able to guarantee the desired approximation
tolerances towards both storage modulus E ′ and loss
factor tan δ, which becomes absolutely non-trivial in
case of significant nonlinear variations, especially at
low frequencies. Finally, additional research has been
done to determine theminimumquantity of experimen-
tal data depending on the frequency ranges covered,
which is required to accurately and fairly reproduce
the viscoelastic behavior of the materials over the nec-
essary frequency or temperature range.

The paper is organized as follows: in Sect. 2, a
description of the viscoelastic material models adopted
is reported, introducing the fractional calculus and the
frequency-domain definition of these models in the
pole-zero formulation. In Sect. 3 the model parameters
identification algorithm is presented, defining and vali-
dating from a mathematical point of view the introduc-
tion of a non-linear element, necessary to improve the
performance of the presented model. Sect. 4, following
a light digression on the materials’ characteristics and
experimental equipment, present the results and discus-
sions of the model’s application on data covering the
entire experimentally tested frequency range and only
a portion of it, while Sect. 5 contains the conclusion
and future developments.

2 Physical endeavor and mathematical framework

In this chapter, following a brief introduction to the
rheological behavior of viscoelastic materials and their
dependence on frequency and temperature, the design
of a novel mathematical formulation is discussed using
a fractional derivative framework. In particular, a spe-
cific poles and zeros based transformation is recalled
which according to recent studies has shown remark-
able robustness in its results [37,38], although it
presents limitations that will be explored and described
for the sake of completeness in the next chapter.

2.1 Viscoelastic material’s behavior

The response of viscoelastic materials results from
a combination of elastic and viscous behavior under
external stimuli. When this class of materials is
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Fig. 1 Example of approximation of viscoelastic proprieties (storage modulus E ′ on the left and loss factor tan δ on the right) for a
generic tire compound fitted a Generalized Fractional Maxwell Model (GFMW)

solicited, their response can be divided into an instan-
taneous reaction, generated by the changing molecular
distance, followed by a consequent deformation, as a
result of the reorganization of polymeric chains.

Specifically, if sinusoidal stress, characterized by
an amplitude σ0 and angular frequency ω = 2π f ,
is applied on a viscoelastic material, it determines a
microscopic reorganization which results in a sinu-
soidal strain with an amplitude ε0 at the same fre-
quency of the input stress but with a phase lag δ, linked
to the energy dissipation inside the material. From a
macroscopic point of view, it is possible to underline
the double nature of elements by normalizing the two
responses according to the amplitude of solicitation σ0,
obtaining the storagemodulus E ′ (Pa) and the lossmod-
ulus E ′′ (Pa), which compose the dynamic stiffness E∗
and define the phase lag δ according to Eqs. (1 and 2),
respectively.

σ(ω)

ε(ω)
= E∗ = E ′ + j E ′′ (1)

tan(δ) = E ′′

E ′ (2)

The material response changes according to the
characteristics of the load. Indeed, by reducing the fre-
quency of solicitation the polymer chains can reorga-
nize themselves within a peculiar molecular motion

characteristic by the time τ , comparable to the period
T corresponding to the specified frequency, showing a
typical rubbery behavior. If instead, the polymer chains
do not have enough time to reorganize, when the stim-
ulation’s frequency is sufficiently high, it will reflect
the glassy behavior which manifests physically as an
increase in modulus as shown in Fig. 2.

The temperature assumes a crucial role in molec-
ular deformation as well, affecting, according to the
theory of free volume, the inter-molecular distance.
Specifically, when the temperature increases, this dis-
tance increases as well, facilitating the movement of
the polymeric chains and therefore reducing the stor-
agemodulus at a fixed frequency.Hence, from amacro-
scopic point of view, the temperature variation affects
thematerial properties by determining a shift of itsmas-
ter curve which can be re-conducted to the frequency
change based on the time-temperature superposition
principle [42]. The value of the shift factor is deter-
mined according to specific laws, among which the
most diffused, especially for polymer applications, is
the Williams–Landel–Ferry one [43]. Due to the limi-
tation of most commercial DMA equipment, the time-
temperature superposition, above described, is usually
used to describe the viscoelastic behavior at high or
low frequencies, which is experimentally inaccessible.
Using this principle, performing tests in a narrow range
of frequencies and at different temperatures, it is pos-
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Fig. 2 Storage modulus (left) and loss factor (right) as a function of frequency for 3 different Compound A-B-C on a log-log scale,
normalized with respect to the maximum value

sible, through an appropriate shift law, to reconstruct
an entire master curve, which describes the behavior of
the material on a large time-temperature scale.

2.2 Constitutive rheological elements

The correct modeling of the material viscoelastic
properties is a key element in achieving reliable results
from analytical models or finite-element-based analy-
ses when designing with these types of materials. Sev-
eral mathematical models can be found in the literature
to help understand and describe material viscoelastic
behavior [18], but it is important to emphasize that sim-
ple models like Maxwell (series of spring and dashpot)
or Kelvin Voigt (parallel to spring and dashpot), fail
to represent the complex non-linear response of vis-
coelastic materials in a large range of frequency. To
improve these models and take into account the multi-
ple characteristic times that these types of materials
have, the generalized linear viscoelastic models are
commonly used. These models consist of a connec-
tion of several Maxwell elements in parallel (General-
ized Maxwell Model (GMW)) or several Kelvin–Voigt
elements in series (Generalized Kelvin–Voigt Model
(GKW)) and are able to overcome the limitations of
simple viscoelastic models, allowing the reproduction
of realistic trend of the material properties, with con-

stant modulus at low and high frequencies, growing in
themiddle, and a phase which is nil at low and high fre-
quencies and non-zero in the middle. However, these
models are based on a large set of differential equa-
tions which increases considerably the computational
load [44].

To reduce the number of parameters, an additional
fundamental mechanical element, commonly known as
spring-pot (Fig. 3), is introduced replacing the deriva-
tive’s integer order with a fractional one within the
dashpot’s constitutive equation, which is described in
Eq. (3):

σ(t) = Cα

dαε(t)

dtα
(3)

where Cα represents the spring-pot coefficient and α is
the properly identified fractional coefficient. This new
element provides a novel and more realistic approach
to the study of dissipating phenomena inside the solid
material, helping to improve the performance of the
GMW and resulting in a new robust formulation
known as the Generalized Fractional Maxwell Model
(GFMW). Fromamathematical point of view, a generic
constitutive equation for viscoelastic materials, based
on fractional derivative orders, is reported in Eq. (4)
[38]:
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Fig. 3 Representation of
rheological elements and
their constitutive equations

Fig. 4 Representation of
the single fractional
Maxwell cell and of the
generalized fractional
Maxwell model structure

N∑

n=0

an
dαnσ(t)

dtαn
=

M∑

m=0

bm
dβm ε(t)

dtβm
(4)

where αn and βm are the fractional derivative orders
included within the range [0, 1]. In this study, deal-
ing only with viscoelastic solids, it will be considered
the Maxwell formulation with N = M and b0 = 0,
with an isolated spring in parallel to the Maxwell cells
to display also reversible creep [37]. Turning to the
frequency domain by applying the Fourier transform
and assuming that a = b, Eq. (4) gives the following
expression for the complex moduli:

E∗
iω = K0 +

N∑

i=1

KiCi ( jω)αi

Ki + ( jω)αi Ci
(5)

where ω is the frequency, which is strictly positive for
the phenomenon under consideration, and the param-
eters Ki and Ci represent the spring stiffness and the
spring-pot coefficients for each i-th element, respec-
tively, as represented in Fig. 4.

2.3 Pole-zero transformation technique

The widely used GFMW has demonstrated great abil-
ity in predicting the viscoelastic behavior of materi-
als. However, the employment of the GFMW approach
in its classical form (Eq. 5), or its equivalent form
in the frequency domain (Eq. 6), poses further chal-
lenges within the identification process of the parame-
ters Ki and Ci due to their high variability relative to
each other. This issue, compounded by an upper-non-
limited existence domain comprehending positive real
numbers, results in a substantial additional computa-
tional cost within the identification process. Indeed, it
is highly likely that an optimizer may converge to a
local minimum dependent on initial conditions rather
than a global solution, thereby limiting the applicability
of the GFMW approach.

Z(ω) = K0 +
N∑

i=1

( jω)αi KiCi

( jω)αi Ci
(6)

Toovercome the above issues, the pole-zero approach
proposedbyRenaud et al. in [37] results to be extremely
advantageous. Indeed, the identification process can
be constrained to guarantee a relatively low variabil-
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ity between different poles’ and zeros’ frequencies,
therefore facilitating the consequent optimization pro-
cess. The numerical optimization is advantageously
constrained imposing the alternation of poles p and
zeros z (Eq. 7) according to the third property demon-
strated by Bland [12] for linear dissipate systems:

z1 < p1 < ... < zi < pi < ... < zN < pN (7)

Once obtained the poles’ and zeros’ frequencies,
Maxwell’s parameters are transformed employing the
Eqs. 8 and 9:

Ki = K0

N∏

h=1

(
ωp,h

ωz,h

)
ωz,h − ωp,i

ωp,h(1 − δih) − ωp,i
(8)

Ci = Ki

ωp,i
(9)

where the parameters Ki andCi are uniquely described:

• K0 is the stiffness of the isolated spring;
• Ki andCi represent the stiffness and the spring-pot
coefficients;

• ωp,i and ωz,h are the frequencies of poles p and
zeros z, respectively;

• δ is the Kronecker delta, which is assumed null
except when i = h where δ = 1 is imposed.

According to this formulation, Dion et al. in [45]
and [46] manipulated the original form of the Gener-
alized Maxwell model to obtain a new formulation in
the poles-zero form, as shown in the Eq. (10):

Z(ω) = K0

N∏

i=1

1 + (
jω

ωz,i
)

1 + (
jω

ωp,i
)

(10)

3 Material modeling approaches

3.1 GFMW model limitations and multi-objective
optimization

In literature, different approaches are available to
address multi-objective optimization, mainly employ-
ing a posterior method to generate the Pareto optimal
solutions and to search for the most suitable trade-
off solution [47,48]. The intrinsic conflict between

error-defined cost towards the two completely diverse
material properties (storage modulus and loss fac-
tor) becomes evident that finding an optimal solution
is intricate, necessitating a compromise between the
response towards two completely different physical
quantities.

The well-known NSGA-II algorithm proposed by
K.Deb et al. [49], rapidly becoming the most widely
used technique, has been chosen for the optimization
scope [50]. Employing a normalized value necessary
for comparing different curves with varying magni-
tudes, the mean absolute percentage error (MAPE)
offered the best-fitting results. MAPE definitions are
reported in Eq. (11), where the MAPE errors consider
the model predictions (indicated with a hat) and the
experimental data in terms of storage modulus, E ′, and
loss factor, tan δ.

MAPEE ′ = 1

n

n∑

i=1

∣∣∣∣∣
E ′
i − Ê ′

i

E ′
i

∣∣∣∣∣ × 100%

MAPEtan(δ) = 1

n

n∑

i=1

∣∣∣∣∣
tan(δ)i − ˆtan(δ)i

tan(δ)i

∣∣∣∣∣ × 100%

(11)

A result of a calibration performed employing
the NSGA-II algorithm with the previously described
GFMW model, widely employed in literature for the
description of viscoelastic materials, is presented in
Fig. 5. As it can be easily observed, the set of obtain-
able parameters (and therefore the resulting model’s
response) deeply depends on the definition of the error-
cost function within the multi-objective routine.

As it appears evident in Fig. 5, the chosen mate-
rial’s model is capable of correctly predicting storage
modulus and loss factor behavior separately. However,
imposing that the two errors have to guarantee similar
dimensions, the GFMW approach is currently unable
to approximate storage modulus and loss factor trends
simultaneously, showing larger deviations, especially
around the glass transition of the storage module and
the peak of the loss factor.

Another limitation is observed for the materials
exhibiting a greater variability of storage modulus at
lower frequencies, as in the case of the material’s stor-
age modulus represented in Fig. 1, where the already
widely adopted model is not able to reproduce the
experimental trend.

In response to these challenges, a novel approach to
the study of the general Maxwell model will be intro-
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Fig. 5 Model response towards storage modulus (left) and loss modulus (right) for a generic tire polymer. Error function definitions:
a major weight for E ′, b same weights for E ′ and tan δ, and c major weight for tan δ

duced in the next section. This approach extended the
GFMW by adopting a nonlinear approach allowing to
increase the model’s flexibility and an improved accu-
racy towards addressing the limitations encountered
with the GFMW model.

3.2 Nonlinear Maxwell model

In real materials, the transition phase between rubbery
and viscoelastic behavior appears often less clear than
the one represented in Fig. 6, with one or more slope

123



Nonlinear mathematical modeling of frequency-temperature...

Fig. 6 Ideal trend of complex moduli G1,G2 and loss factor
tan δ

variations related to the complex internal dissipative
phenomena in the material. Viscoelastic materials, as
above described, are strongly influenced by their chem-
ical composition. The intermolecular forces, the length
of the polymer chains, the curing, and the crystalline
degrees are all factors that interact with each other, gen-
erating an overall material response depending on the
speed at which the stress is applied.

In general, it can be observed that, while the loss fac-
tor keeps its bell shape, for the storagemodulus the sig-
moidal trend is altered by rapid changes in slope as the
frequency increases; i.e, in the example reported in Fig.
1 it is evident that for frequencies of the order of 106,
there is an inflection point, where some movements,
previously possiblewith a relatively slowapplication of
stress, are now blocked, generating an increase in terms
of the storage modulus slope. In particular, this phe-
nomenon can be understood by observing its temper-
ature dependence. The compounds, a mixture of poly-
mers, oil, resin, and additives, exhibit varying proper-
ties at different temperatures due to the distinct impacts
of each component. Typically, it is observed that until a
specific characteristic temperature is reached, the rheo-
logical behavior of the compound correlateswith that of
the polymers, which are the principal components. At
higher temperatures, the resin begins to exert a greater
influence as certain chemical balances change, result-
ing in increased freedom of movement of the polymer
chains and a more pronounced reduction in the storage
modulus [51]. Since this variability is strongly influ-
enced by the chemical characteristics, which may also
vary depending on the technological treatment under-

gone, it is difficult to approximate using a linear for-
mulation.

Hence there is the need to take into account a non-
linear approach, already proposed by Jrad et al. [41],
who first considered a non-linear spring element, with
variable stiffness as a function of the stress amplitude,
in parallel with Maxwell’s elements to approximate
the experimental trend of acquired dynamic charac-
teristics. The approach presented in this work aims to
increase flexibility in following slope variations; for
this reason, non-linearity is initially introduced in the
isolated spring K0, which has greater influence pre-
cisely at low frequencies, by introducing the depen-
dence on omega by means of a function K (ω). This
will increase the flexibility of the model in the approxi-
mation of the storage modulus by being able to predict
the slope variations associated with complex chemi-
cal structures. To justify the proposed formulation, a
mathematical validation of pole and zero expression
with this new nonlinear element must be specifically
addressed. In this section, it will be demonstrated the
validity of the equation in the case of two elements of
Maxwell in parallel with an isolated nonlinear spring,
as it will show that the result may be easily extended
to n elements.

By considering the Eq. (10)with n = 2, it is possible
to obtain:

Z(ω) = K0(ω)

⎛

⎝
1 + (

jω
ωz,1

)

1 + (
jω

ωp,1
)

⎞

⎠

⎛

⎝
1 + (

jω
ωz,2

)

1 + (
jω

ωp,2
)

⎞

⎠ (12)

Z(ω) = K0(ω) ∗ ( jω) ∗ ωp,1

ωz,1
∗ ωz,1 + jω

ωp,1 + jω
∗ ωp,2

ωt,2

∗ ωz,2 + jω

ωp,2 + jω
∗ 1

jω
(13)

and taking into account:

A0 = ωz,1

ωp,1

ωz,2

ωp,2

A1 = ωz,1 − ωp,1

−ωp,1

ωz,2 − ωp,1

ωp,2 − ωp,1

A2 = ωz,2 − ωp,2

−ωp,2

ωz,2 − ωp,1

ωp,1 − ωp,2

(14)

the Eq. (13) can be rewritten in a different form as
follows:
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Z(ω) =K0(ω) ∗ ( jω) ∗ ωp,1

ωz,1
∗ ωp,2

ωz,2
∗

[
A0

jω
+ A1

jω + ωp,1
+ A2

jω + ωp,2

]

=K0(ω) ∗
[
1 + A1A

−1
0 jω

jω + ωp,1
+ A2A

−1
0 jω

jω + ωp,2

]
(15)

Considering the relationship between pole and zero
formulation and spring Ki and dashpot Ci elements:

Ki (ω) = K0(ω)

N∏

h=1

(
ωp,h

ωz,h

)
ωz,h − ωp,i

ωp,h(1 − δih) − ωp,i

(16)

Ci (ω) = Ki (ω)

ωp,i
(17)

with i = [1, 2], it is possible to obtain the original form
of the generalized Maxwell model reported in Eq. (6)
with n = 2:

Z(ω) = K0(ω) + jωK1C1

K1 + jωC1
+ jωK2C2

K2 + jωC2
(18)

The non-linear spring proposed has a different
response depending on the frequency, but the response
remains simultaneous with the solicitation. From a
mathematical point of view, the associated impedance
of this element remains a pure real element if the fol-
lowing condition is respected:

K0(ω) : ω ∈ R
+ → K0(ω) ∈ R

+ (19)

Therefore, it is possible to assert that the variability
of the stiffness K0 amplifies both the real and imaginary
parts of the equivalent impedance, generating a change
in the modulus of the latter without changing its phase.
In other words, the non-linear equation introduced into
the K0 modifies the trend of the storage modulus with-
out changing the loss factor’s prediction, in line with
[37].

To this end, it is necessary to ensure that the pre-
vious Eqs. (8 and 9) are satisfied, which is achievable
by assuming that the nonlinearity expands beyond the
solitary spring in parallel. This means that it is rea-
sonable to consider all elements of the system became
nonlinear elements, in particular, nonlinear springs or
nonlinear fractional springpots whose constants can be
described respectively by the Eqs. (16 and 17). Based
on this consideration, the performance of themodel can
be improved by continuing to use the pole and zero for-
mulation. These changes, as will be shown, will have a
significant impact on the adaptability of this model for
materials of a different nature.

3.3 Nonlinear generalized fractional Maxwell model
(NLGFMW)

It is worth noticing that pole and zero formulation can
be generalized to fractional calculus as done byRenault
et al. [37] as follows:

Z(ω) = K0

N∏

i=1

1 + (
jω

ωz,i
)αi

1 + (
jω

ωp,i
)αi

(20)

where αi is the derivative fractional index of the spring-
pot into theMaxwell element i-th and it is a real number
between 0 and 1. According to this formulation, the
modulus and the phases of this fractional calculus pole-
zero formulation are given by the equations:

|Z (ω) | = K0
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In summary, the previously proposed solutions can be
updated to take into account the mentioned nonlinear
components using the mathematical steps described
above the Eq. (22) continues to be valid for the cal-
culus of the phase, the following equation will be valid
for the modulus:

|Z(ω)| = K0(ω)

N∏

i=1

√
1 + 2( ω

ωz,i
)αi cos( γπ

2 ) + ( ω
ωz,i

)2αi

√
1 + 2( ω

ωp,i
)αi cos( γπ

2 ) + ( ω
ωp,i

)2αi

(23)

It should be noted that being the non-linearity based
on the same stiffness equation K0(ω), the number of
parameters to be considered is limited. In other words,
in addition to the usual 3n+1 parameters in theGFMW,
only the parameters of the single nonlinear equation
need to be added.

In detail, since the additional stiffness K0 influences
the storage modulus, from a physical point of view it
is reasonable to think that it has a trend resulting from
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the variation in stiffness of the viscoelastic materials as
the frequency varies. Namely, as previously explained,
there are two characteristic slope variations in the stor-
age modulus, more or less marked, which reflect the
evolution of the behavior of these materials as the fre-
quency increases, linked to phenomena intrinsic to the
material itself. In this context, the glass transition tem-
perature Tg assumes particular importance as it marks
the transition from a rubbery to a glassy behavior with a
stabilization of the stiffness at a very high value. There-
fore, in this study, a bell-shape trend for the K0(ω) has
been assumed, with the pick corresponding to the Tg
value, and shape factors adjusted based on experimen-
tal data.

The function K0(ω) is composed of the sum of two
Gaussian functions that ensure the bell-shaped form,
both centered on a reference value of frequencyω∗ cho-
sen, as stated above, as the glass transition frequency
(see Eqs. 24 and 25). This step allowed to reduce the
parameters of each Gaussian from 3 to 2, making the
identification faster andmore robust. The parameters to
embed with classical GFMW and governing the func-
tion K0(ω) became 5 with the addition of the asymme-
try parameter t (Eq. 24), which handles the different
behavior required of the spring at low and high fre-
quencies, as illustrated in Fig. 8. So, the final form of
the K0 is of the following type:
{
K0(ω) = f1(a, b) + f2(c, d) if ω < ω∗

K0(ω) = t · ( f1(a, b) + f2(c, d)) + shi f t if ω > ω∗

(24)

with:
{
f1(a, b) = a · e( ω−ω∗

b )2

f2(a, b) = c · e( ω−ω∗
d )2

(25)

This structure provides a well-defined meaning to
the functions f1 and f2; in fact by constraining b>>d
and a<c, as imposed into the algorithm, f1 governs
the functions far from the glass transition frequencies,
while f2 characterizes the non-linear spring behavior
near these frequencies, an example is shown in the
graph in Fig. 7. So, the global role of each parame-
ter, also shown in the sensitivity analysis in Fig. 8, is
reported below:

• a is the dimension factorwhich, in conjunctionwith
parameter c, handles the orders of magnitude of the
curve

Fig. 7 Example of the sum of the functions f1 and f2

• b is the shape parameter at external frequencies
which affects the two asymptotes at low and high
frequencies

• c is the growth factor which affects the ordinate of
the peak

• d is the shape factor at intermediate frequencies
which governs the extension of the peak and the
position of the inflection points on the x-axis of the
bell shape

Finally, the shift is automatically determined by the
software to ensure the class C2 continuity of the func-
tion.

4 Results

The proposed NLGFMW model has been employed
to reproduce the dynamics moduli of 10 different vis-
coelasticmaterials for tire applications, covering awide
range of different behaviors, to discover the minimum
number of elements to employ in the domain of inter-
est, and therefore the number of parameters sufficient
to correctly reproduce the desired characteristics. In
the following paragraphs, a detailed description of the
materials analyzed is provided. Subsequently, a com-
parative evaluation of novel versus traditional model
performance is undertaken, including a thorough anal-
ysis of the total number of parameters needed and
considerations about the processing run-time. These
aspects were instrumental in developing a logical oper-
ational diagram for the NLGFMW calibration algo-
rithm. Finally, the potential of this model is discussed,
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Fig. 8 Change of K0 of tipical trend as a consequence of the increase of each five parameters

demonstrating its efficacy even with limited experi-
mental data.

4.1 Materials

The 10 materials selected were chosen to ensure suf-
ficiently differentiated mechanical properties to cover
a wide range of viscoelastic responses without going
into the details of the chemical nature, which was irrel-
evant to the study. The storage modulus and the loss
tangent were evaluated for each of these compounds
through DMA testing performed with a tensile geome-
try and horizontal orientation, at a reference frequency
of 1Hz [13,52,53]. The chosen test mode was the tem-
perature sweep, in a range between -50◦C and 120◦C
(with air cooler), with a temperature ramp of 1◦C/min
and a % strain of 0.1. Each material was tested under
the same conditions, in oscillator strain control mode
with an amplitude of 0.05%, and applying a static force
of 2N with a force resolution of 10−6N , a tanδ resolu-
tion of 10−6 and a modulus resolution of 10−5Pa. The
data delivered by the DMA provider also included the
frequency data obtained with an appropriate shift law
based on the Time-Temperature Superposition Princi-
ple.

In detail, the viscoelastic materials present differ-
ent glass transition frequencies and viscoelastic pro-
prieties, summarized in Table 1. The table reports the
value of frequency in which the peak of loss factor is
obtained, along with the corresponding value, dimen-

sionless respect to the minimum of this group, and the
stabilized value of the storage modulus in the glass
zone (E ′∞), also dimensionless respect to the minimum
value (the presence of the normalized value is necessary
for confidentiality reasons). These compounds show, in
general, dynamic module plateaus at low and high fre-
quencies with different slopes, based on their diversi-
fied microscopic composition. In the following, these
elements will be indicated as Compounds A, B, and
C, with particularly marked transition zones and high
value of glass region plateau with E ′∞ 4 order of mag-
nitude greater respect the lowest; Compounds D, E and
F show a not very pronounced first transition at low
frequencies and relatively low glass transition frequen-
cies, similar to each other but with different value of
loss factor and storage modulus reached. Finally, Slabs
A, B, C, and D are characterized by a higher frequency
of glass transition and low values of both the loss factor
and storage modulus.

4.2 NLGFMW application with DMA test

The identification procedure, needed to find the optimal
set of parameters, including poles, zeros, and the K0

parameters, was performed with different numbers of
fractional elements and the results were compared both
qualitatively with graphs and quantitatively with the
MAPE metrics, both for the storage modulus and the
loss factor, employing the metrics defined in Eq. (11).
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Table 1 Characteristics of materials under investigation

Material tan(δ) Peak frequency (Hz) Relative max(tan(δ)) Relative E ′∞

Compound A 13.9 1.17 4.23

Compound B 9.9 1.31 4.36

Compound C 8.9 1.64 4.32

Compound D 7.7 1.88 1,59

Compound E 8.1 1.48 1,55

Compound F 8.2 1.50 1

Slab A 15.4 1 1.50

Slab B 13.8 1.12 1.14

Slab C 13.7 1.12 1.45

Slab D 12.1 1.26 1.45

frequency is in log10 scale; data in columns 3 and 4 are normalized against the minimum value in the column

It is worth specifying that, in the NLGFMWmodel,
the total number of parameters is determined by the
number of fractional elements introduced and the func-
tion K0(ω). In total, there are 3 parameters for each
element and 5 parameters of the K0(ω).

Figure9 shows the results of the model implemen-
tation with 3, 4, and 5 elements, and, respectively, with
14, 17, and 20 parameters, for four different materials,
while in Table 2, theMAPE errors, evaluated for all the
samples available, are reported. Note that in all figures
the properties will be dimensionless to the maximum
value to maintain the confidentiality of the data used.

Analyzing the results, shown in Table 2, it is evident
that all three NLGFMW models exhibit satisfactory
performance across all ten materials considered, with a
maximumerror of approximately 7%observed for both
the storagemodulus E ′ and the loss factor tan δ. Gener-
ally, increasing the number of elements leads to lower
error rates and thus to a better representation of real
data, but also to a higher computational cost and num-
ber of parameters to identify. Nevertheless, it is note-
worthy that in certain instances, as for the compound
F, the 5-elements NLGFMWmodel demonstrates infe-
rior performance compared to its 4-elements counter-
part, probably because the number of parameters is too
high compared to the amount of data available, leading
to less efficient identification of poles and zeros. Con-
sidering a trade-off between the goodness of the model
and the computational load of the calibration proce-
dure, the 4-elements NLGFMW model is revealed to
be the optimal choice.

It is interesting to compare the results of the newly-
developed nonlinear fractional model with the already
widely adopted fractional model, which proved to give
similar results to the generalized Maxwell model, but
with a limited number of parameters, thus reducing the
computational load that affects efficiency and effective-
ness [38]. For the comparison, to guarantee a compara-
ble number of parameters, 3-elements were adopted for
the nonlinearNLGFMWmodel (14 parameters to iden-
tify), while 4-elements were used for the linear GFMW
model (thus 13 parameters to identify).

The outcomes are reported graphically for four
materials in Fig. 10, together with the correspond-
ing MAPE metrics reported in Table 3, chosen as the
goodness criteria since it proved to be the most robust
methodology as the number of elements changes.

The compounds A, B, and C show excellent results
already with the previous GFMW model, as reported
in the previous study since these materials exhibit a
very regular trend for the viscoelastic properties, with
marked transition zones. However, the classical frac-
tional generalized Maxwell model does not work opti-
mally with the other materials which show a less pre-
dictable trend of the viscoelastic moduli. In particu-
lar, the model can return a good fitting only of one of
the properties, while the other one is not acceptable.
Also changing the weight on the errors, the result is
to improve the property not well fitted and worsen the
other. This is the reason that forced the authors to the
introduction of a nonlinear spring, as explained before,
which permits the achievement of excellent results both
on the storage modulus and the loss factor.
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Fig. 9 E ′ and tan δ curves reproduced with NLGFMW models composed of 3, 4, and 5 elements, for Compound A (a), Compound C
(b), Slab A (c) and Slab C (d)

From the previous analysis, it appears evident that
the nonlinear NLGFMW model proposed with 4 frac-
tional Maxwell cells can reproduce efficiently all the
materials’ viscoelastic properties under investigation.
However, on some occasions, the non-linearity K0

is not strictly essential, since the classical fractional
GFMW model is able to achieve satisfactory results.
For this reason, the algorithm methodology described
in Fig. 11 is designed as the general approach to model

the frequency-temperature dependent behavior of vis-
coelastic materials for tire applications, where the non-
linear K0(ω) initially considers its constant term and
the other 3 parameters are identified only if specific
criteria are met.

As concerns the running time these are calculated
with the following PC’setup: processor Intel I-7 13th
gen with cores speed (6P+8E) around 4GHz, 32 Gb
DDR5 ram and the Matlab 2023b software with fmin-
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Table 2 MAPE benchmark for NLGFMW models composed of 3, 4 and 5 elements

3-elements NLGFMW 4-elements NLGFMW 5-elements NLGFMW

Material MAPE E ′ (%) MAPE tan δ (%) MAPE E ′ (%) MAPE tan δ (%) MAPE E ′ (%) MAPE tan δ (%)

Compound A 0.526 4.023 1.363 1.532 0.986 3.421

Compound B 0.775 5.381 0.971 4.808 0.207 0.650

Compound C 1.541 5.173 0.096 0.509 0.188 0.814

Compound D 6.379 4.087 3.933 3.839 4.293 4.050

Compound E 5.204 3.882 4.470 3.617 3.961 2.929

Compound F 1.907 3.780 1.930 3.904 1.962 4.040

Slab A 1.006 3.213 0.820 2.154 0.803 2.175

Slab B 1.885 3.074 1.860 3.006 1.864 3.048

Slab C 1.822 4.703 1.104 2.937 1.147 2.891

Slab D 3.118 6.788 3.136 6.818 3.886 5.594

Table 3 MAPE benchmark for NLGFMWmodel composed of 3 elements (14 parameters) and GFMWmodel composed of 4 elements
(13 parameters)

3-elements NLGFMW 4-elements GFMW

Material MAPE E ′ (%) MAPE tan δ (%) MAPE E ′ (%) MAPE tan δ (%)

Compound A 0.526 4.023 0.359 1.035

Compound B 0.775 5.381 0.238 1.529

Compound C 1.541 5.173 0.009 0.079

Compound D 6.379 4.087 16.853 16.318

Compound E 5.204 3.882 31.491 3.662

Compound F 1.907 3.780 24.652 3.737

Slab A 1.006 3.213 6.932 4.109

Slab B 1.885 3.074 10.280 3.233

Slab C 1.822 4.703 2.402 8.246

Slab D 3.118 6.788 19.322 5.735

con [54] as optimizer solving non-linear constrained
optimization problems. The running times are reported
in Table 4, and show how the 3-element model has a
significant improvement over the 5-element, with times
reduced by up to 48% in the case of the compound D.
In general, the average processing time of the algo-
rithm for the 3-elements model in this experimental
campaign is 48% faster then 5-elements with a maxi-
mum under 3 s. These results increase the potentiality
of this approach, making the model also suitable for
real-time evaluations or implementations in material
structure monitoring devices.

In detail, the general NLGFMWmodel is composed
of 4 fractional Maxwell cells plus the K0(ω) function,

for a total of 17 parameters. The first identification is
performed by activating just 1 parameter for the spring,
which means a constant stiffness value and a total of 13
parameters. If the MAPE metrics both for E ′ and tan δ

are less than a threshold (fixed at 10%), the model is
already considered acceptable; otherwise, the other 3
K0(ω) parameters are activated, with the stiffness vary-
ing with ω, so to calibrate the entire set of 17 parame-
ters. Following this phase, a model reduction to 3 cells
is attempted, to evaluate whether, with an even smaller
number of parameters, the results are still valid. Also in
this case, the acceptance or otherwise of theNLGFMW
model is established based on the MAPE error thresh-
old, which is set at 10% for both dynamic modules.
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Fig. 10 Comparison in terms of E ′ and tan δ fitting with a 3-elements NLGFMW model and a 4-elements GFMW model, for the
following materials: Compound D (a), Compound E (b), Slab A (c), and Slab C (d)

In summary, therefore, the proposed NLGFMW
model differs from those commonly employed in the
literature due to the addition of the frequency depen-
dence of the stiffness of the single spring of the
Maxwell fractional model, which makes the model
more versatile and able to reproduce the behavior of
a wider range of viscoelastic materials.

4.3 Results addendum: NLGFMW application with
limited experimental data

The results exposed so far have demonstrated that the
non-linear fractional Maxwell model, expressed in the
pole-zero domain, enables an excellent reproduction
of the viscoelastic moduli in the frequency domain,
validated for very different materials.
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Fig. 11 Logical operaring
diagram of NLGFMW
calibration algorithm
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Table 4 Running time for NLGFMW models composed of 3, 4, and 5 elements

RUNNING TIME (s)

Material 3-elements NLGFMW 4-elements NLGFMW 5-elements NLGFMW

Compound A 2.7 3.4 4.4

Compound B 2.5 3.5 4.4

Compound C 2.7 3.4 4.3

Compound D 2.3 3.2 4.4

Compound E 1.7 2.4 2.8

Compound F 1.6 2.2 2.8

Slab A 1.6 2 2.6

Slab B 1.3 1.9 2.5

Slab C 1.6 2.2 2.6

Slab D 1.3 2 2.5

Average 1.9 2.6 3.3

MIN | Relative MIN (%) 1.3 | 68% 2 | 76% 2.5 | 75%

MAX | Relative MAX (%) 2.7 | 142% 3.4 | 130% 4.4 | 133%

Taking into account that the amount of necessary
resources, both in terms of money and time, increases
as the range of frequencies to be tested experimen-
tally expands, another interesting analysis conducted
by the authors regards the possibility of calibrating the
NLGFMW model employing a minimum number of
experimental data. Similarly to the previous study of
Genovese et al. [38], the best combination to correctly
identify the viscoelastic master curves is composed of
5 zones: data corresponding to the lower and upper fre-
quencies plateau of the storage modulus, the peak of
the loss tangent curve, and the data from the curvature
change of both curves. Genovese et al. also demon-
strated that it is possible to obtain valuable results in
reproducing the entire behavior of thematerialwith just
3 zones: data corresponding to the lower and upper fre-
quencies plateau of the storage modulus, and the peak
of the loss tangent curve. The latter is the approach
followed in this study, choosing experimental data that
represent the low and upper-frequency plateaus, plus
a zone that is around the glass transition temperature
(between the peak of the tan δ and the inflection of the
E ′ before the final plateau).

This kind of approach could be easily implemented,
for example, by tire makers capable of predicting the
glass transition temperature Tg by controlling the com-
ponents such as polymers and resins through equations
like the Fox equation, which is a useful tool for calcu-

lating the overall Tg starting from mixed components
with different Tg values [51].

In the following, for each zone, a range of 102 rad/s
of frequency has been selected (these ranges could be
also expanded), and a 4-elements NLGFMW has been
employed. It is worth highlighting that the characteri-
zation up to the second plateau was available only for
compounds A, B, C, and D, while for the other materi-
als, the available data stopped shortly after the peak of
the tan δ. For this reason, for the first mentioned mate-
rials, the 3 zones described previously were identified
and the results of the model were compared with the
experimental data, while for the remaining ones, only
data corresponding to the first plateau and the tan δ

peak were considered (more strict 2 zones), still giving
satisfactory results when comparedwith available data.

The results for four materials are visible in Fig. 12,
while the MAPE errors between the predicted model
and the experimental data are listed in Table 5 for all
ten materials.

The outcomes are very promising, with an error
always below 10% excluded for the MAPE of the tan δ

for slab D, for which it is important to remember that
only two zones were selected to calibrate the model.
Hence, with only three zones that cover a range of 20–
30% of the total experimental data, it is possible to
achieve reliable results that allow evaluating the vis-
coelastic properties in a much wider frequency range.

123



Nonlinear mathematical modeling of frequency-temperature...

Fig. 12 4-elements NLGFMWmodel response in terms of E ′ and tan δ calibrated with limited experimental data for Compound A (a),
Compound B (b), Compound D (c), Compound E (d)

It is worth observing that each zone is necessary to
set appropriate parameters of the formulation of K0:
zone 1 and zone 3 determine the parameters of f1 of
the Eq. (25) and the asymmetry parameter t , as it pro-
vides information on the frequency ranges far from the
glass transition region; while the zone 2 as part of the
transition zone is necessary for the identification of the
parameters of f2 of the Eq. (25). In the case where, as
for Compound E in Fig. 12, the information relating to

the 3rd zone is missing, the algorithm adapts itself by
using only the data available.

This is a valuable achievement since it means that
it is not always necessary to cover an extensive range
of frequencies when testing a material, but by appro-
priately choosing the most relevant areas, it is possible
to significantly reduce the number of experiments to
be carried out by limiting only at specific temperatures
and frequencies. This advantage has a significantly pos-
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Table 5 MAPE metrics for a 4-elements NLGFMWmodel cal-
ibrated on partial experimental data

4-elements NLGFMW

Material MAPE E ′ (%) MAPE tan δ (%)

Compound A 1.198 7.109

Compound B 1.678 9.727

Compound C 1.931 9.646

Compound D 2.892 6.966

Compound E 3.938 6.469

Compound F 2.494 5.662

Slab A 8.468 4.364

Slab B 2.581 3.718

Slab C 2.665 8.028

Slab D 6.896 15.003

itive impact on the employable resources, allowing to
minimize the time and costs in the testing phase.

Finally, it is noteworthy that the nonlinear 4-
elements model has been chosen to test the capacity to
reproduce the material behavior from a limited amount
of data, but also in this case the logic scheme presented
in Fig. 11 can be applied.

5 Conclusion

The study presented an innovative approach to model-
ing the mechanical behavior of viscoelastic materials,
introducing a nonlinear dependence of stiffness on fre-
quency.Basedon thewell-establishedpole-zero formu-
lation for the GFMW, a new formulation has been pro-
posed and mathematically validated to better replicate
the dynamic moduli trend for materials with marked
nonlinear behavior.

It has been shown that the addition of a nonlinear
isolated spring in the model has effects on the formu-
lation of the storage modulus and not the loss factor,
consistently with what could be physically expected
since that element schematizes a stiffness and not a
dampening.

By exploiting the advantages of the pole-zero identi-
fication procedure,which allows to overcomecomputa-
tional and convergence problems starting from specific
boundary and initials conditions, the optimal multi-
objective optimization logic was identified, relying on
the MAPE metrics. With these assumptions, the new

nonlinear model was implemented and validated on 10
differentmaterialswith very diversemechanical behav-
ior, previously characterized with the DMA technique.

The NLGFMW model has proven to be valid in
identifying the viscoelastic properties with even just
3 fractional elements, with errors comparable to those
obtainedwith 5 elements, andwith shorter computation
times.

Furthermore, the novel nonlinear model has been
compared to the previous GFMW, setting a compa-
rable number of parameters, to quantify the improve-
ments obtained. For 7 out of 10 materials, the nonlin-
ear model performed wide better than the linear one,
always falling below 7% of error. The only case in
which the results were comparable was on 3 com-
pounds with marked transition zones, for which the
addition of the non-linear spring is superfluous. These
outcomes led to establishing a general approach based
on a 17-parameters nonlinearmodel, with the chance of
choosing a constant stiffness or a frequency-dependent
one according to the need. Furthermore, the possibil-
ity of further reducing the number of parameters is
explored, once the type of model best suited to the
material under investigation has been established.

Overall, therefore, the new modeling proved to be
very efficient in reproducing the behavior of even very
different rubber materials, showing greater versatility
compared to the classic fractional model, while still
maintaining complete physical coherence.

Finally, the validity and stability of the model were
investigated even in the case of a small number of
experimental data available, to understand the mini-
mum number of tests necessary to be able to reproduce
the mechanical characteristics over an extended fre-
quency range. Adopting data coming from the lower
and upper frequencies plateau of the storage modulus,
and data around the Tg value, the NLGFMW with 4
elements allowed to achieve valuable results, and this
could represent an excellent tool for reducing resource
usage in the experimental phases.
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