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Abstract: One of the main challenges in maximizing vehicle performance is to predict and optimize
tire behavior in different working conditions, such as temperature, friction, and wear. Starting from
several approaches to develop tire grip and wear models, based on physical principles, experimental
data, or statistical methods available in the literature, this work aims to propose a novel tire wear
model that combines physical and statistical analysis on a large number of high-performance vehicle
telemetries, tracks, and road data, as well as tires’ viscoelastic properties. Another contribution of
this multidisciplinary study is the definition of the functional relationships that govern the tire–road
interaction in terms of friction and degradation, conducting a thorough analysis of the car’s telemetry,
the track and asphalt features, and the viscoelastic properties of the tires.

Keywords: tire wear; statistical approach; regression technique; multivariate database; vehicle
experimental data

1. Introduction

The main aim of this research work is to develop a straightforward and analytically
effective tire wear model for motorsport applications, able to describe wear in terms of
the reduction in tread thickness, starting from vehicle experimental data collected from
completely different sources. In the literature, the wear rate of the tire tread is often
described by a function proportional to the frictional power dissipated during tire–road
contact, where the frictional power is directly dependent on the local sliding speed, the
local contact pressure, and the coefficient of dynamic friction [1,2]. These parameters are
a direct consequence not only of the tire construction and the maneuvers which the tire
undertakes [3,4], but also of the road characteristics and boundary conditions such as the
temperature, pressure, and velocity distributions within the instantaneous contact patch,
as well as of kinematic and dynamic quantities transmitted via the tire tread and materials’
properties in mutual contact [5,6].

The scientific community completely agrees that the wear phenomenon is local, the
function of the local pressure, temperature, and velocity distributions within the contact
patch, and these are not so easy to obtain [7–9], being currently not directly measurable
in the real road scenario [10–12], and their determination usually relies on mathematical
formulations, frequently involving nonlinear finite element analysis, brush theories, and
flexible multibody-based approaches [13,14]. In addition, the evaluation of the compound
characteristics is usually evaluated through destructive approaches, forcing the prototyping
engineers to feed the preliminary models with nominal, and not usually reliable, viscoelastic
data [15,16].
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The first studies related the consumption of a solid body to the work computed by
the friction forces [17,18]. This concept was then extended to the tire field by Schallamach,
proposing the proportionality between abrasion and frictional energy dissipation [19]. In
1986, Shepherd extended Schallamach’s theory advancing the concept of wear abrasion
proportional to the sliding length in the operating conditions where the lateral stress
is larger than a certain threshold stress, once a certain constant coefficient of friction is
supposed [20]. Later, Sueoka adapted his research on wear pattern formations at the contact
interface with a rotating system to automotive tires, assuming that the polygonal wear is
caused by vertical force variation as a result of the first vertical natural mode of the tire belt
and approximating the tire by a rigid ring model, where the wear formulation is based on
Shepherd’s abrasive model with a time delay concept [21]. Le Maitre proposed an empirical
statistical methodology taking into account road surface, weather, driving styles, routes,
vehicles, and other vehicle parameters able to affect tire wear and to classify the tire usage
as mild, medium, and severe [22]. More recently, Braghin proposed an experimentally
determined friction and wear model employing data acquired under controlled laboratory
conditions, resulting in a friction power scaled with tire–road contact patch area and
two wear constants relating to the rubber compound temperature and the road surface
roughness [23]. Veen investigated irregular tire wear, coupling Shepherd’s formulation,
and the rigid ring vertical dynamics [24]. Huang et al. proposed a recent theory able to
estimate the tread mass removal employing the instantaneous local three-dimensional
pressure and sliding local distributions [25,26]. The necessity to shift the paradigm and to
formulate the tire wear model from a multidisciplinary perspective was first pointed out
in [27], where an impressive experimental campaign was conducted to quantify potential
thermal, degradation, and material influences.

However, it must be highlighted that these references, empirically relying on restricted
experimental data, generally access the goodness of the model behavior towards a specific
working range, in terms of the interface temperature, road characteristics, or rubber materials
adopted [28]. Indeed, a multitude of different phenomena, such as the effect of road rough-
ness [29], vehicle running conditions [30], and the viscoelastic properties of the compound [31]
all affect the wear rate. The different nature of these phenomena makes the operation of
analyzing the acquired experimental data fairly complex, given the difficulty in extracting the
truly relevant information directly correlated to the target variable of the activity.

First of all, all the data available, provided by an industrial partner, have been pre-
processed to extract several key performance indicators (KPIs) able to synthesize the
complexity of the starting database. After that, diverse statistical approaches have been
applied to the reference datasets, developing different regression models [32] to understand
their applicability and overall reliability. To this end, tire wear acquisitions available per
each dataset collected have been employed to train the diverse algorithms in a supervised
learning approach and to validate their reliability.

In this work, mainly three strategies have been analyzed and subsequently imple-
mented, with a progressive increase in the data pre-processing phase: the implementation
of feed-forward neural networks [33], the reduction in the dimensionality of the database
through a feature selection carried out with the principal component analysis [34] coupled
with the development of linear multiple regression, and finally, the implementation of a
linear multiple regression based on the combination of different linear correlations based
on the physical nature of the data. Despite the obvious simplification of the problem
under examination, these approaches have been chosen with the intention of developing
simple models capable of providing greater information on wear levels in scenarios not yet
explored from an experimental point of view. The reliability of the different approaches
proposed was evaluated through a series of statistical indicators [35] and by applying the
different models to an additional testing database not used in the training phase, confirming
the improved robustness of the last methodology to be presented.

The paper is structured as follows. In Section 2, all the different machine learning
methods based on a statistical approach have been presented in detail, describing how
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it has been possible to apply these strategies to the wear rate estimation; after that, in
Section 3 an overview of the reference database is provided, indicating how it was possible
to extract the different KPIs, given the complexity of the multivariate dataset in question.
Subsequently, in Section 4, the different results obtained with the three approaches have
been illustrated, showing the strengths and weaknesses of each procedure.

2. Methodologies

In order to develop a robust and accurate model for predicting tire wear, various
approaches have been explored and applied to the reference database, which will be
described in detail in the following section. This work primarily focuses on statistical
methods based on machine learning as they offer valuable tools for building predictive
models. Machine learning techniques allow the designing of mathematical models capable
of learning and identifying patterns within a given database. They find applications in a
wide range of fields, including:

• Data Clustering: This approach involves dividing the data into distinct subgroups
based on specific features used to establish the clusters [36,37].

• Classification Problems: In classification, the goal is to predict outcomes among a
finite number of different classes [38].

• Regression Problems: Regression aims to predict numerical values, making it particu-
larly relevant for tire wear prediction [33,39].

Machine learning algorithms can be broadly categorized based on their learning process:

• Supervised Learning: In supervised learning, the algorithm learns from labeled ex-
amples present in the training dataset. Classification and regression problems are
typical examples of supervised learning, where the labeled data provide the necessary
supervision during the learning process [40].

• Unsupervised Learning: Unlike supervised learning, unsupervised learning does
not rely on class-labeled examples in the training phase. The input examples are not
labeled, and the learning process is not guided by specific targets. A common problem
in this category is data clustering, where patterns and relationships are discovered
without prior knowledge of the classes [41].

The tire wear prediction task, using the reference database available for this research,
falls under the realm of supervised learning. This is because the database includes experi-
mental measurements of tire wear, providing labeled data for all the analyzed conditions.
Since tire wear represents the gradual thinning of the tread and does not have discrete val-
ues corresponding to specific classes, predicting tread wear assumes the form of a classical
regression problem. During this research activity, three different statistical machine learn-
ing approaches have been adopted and they will be explained starting from the simplest
to apply up to the one that requires the most detailed pre-processing phase of the starting
database:

1. Feed Forward Neural Network;
2. Principal Component Analysis and Multiple Linear Regression;
3. Physical Correlations and Multiple Linear Regression.

2.1. Feed Forward Neural Network

The first approach has been the use of an artificial neural network (ANN); it is a set
of simple units, called neurons, which communicate with each other by sending signals
through connections and which are often organized in different layers according to need.
In most cases, an artificial neural network is an adaptive system that changes its structure
based on information flowing through the network itself during the training or learning
phase [42]. They can be used to simulate complex relationships between inputs and
outputs that other analytic functions cannot represent. Moreover, neural networks, through
learning cycles (input–processing–output) more or less numerous, are able to generalize
and provide correct outputs associated with inputs that are not part of the dataset with
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which the network is trained [43]. To make a neural network work correctly, it is necessary
to carry out an initial training phase; to do this, there are several training algorithms
that meet specific needs and purposes. In the case of supervised learning, the network is
provided with a set of inputs to which known outputs correspond. By analyzing them,
the network learns the link that unites them. In this way it learns to generalize, that is, to
calculate new correct input–output associations by processing inputs external to the main
dataset used for the learning phase and without knowing the outputs. In this way, it is
possible to predict certain results by knowing the main quantities on which they depend.

Each neuron has several inputs which can be either the input signals of the problem
or signals deriving from previous neurons. The different inputs are added together in
relation to the weightof their connections. In the training phase of the neural network, these
weights are used to improve the learning of the network. The neuron is also characterized
by a bias. It can be seen as a weight connected to a dummy input equal to unity that has
the task of calibrating the neuron’s optimal working point. Another fundamental feature of
the elementary unit is the activation function that defines the output of the neuron itself
(Figure 1). In particular, this function shapes the output of the neuron related to its internal
potential, which is determined by the inputs, the weights of the connections, and the bias.

Figure 1. Most common activation functions for a unit.

A widely used activation function, employed also in the proposed approach, is the
sigmoid, since its non-linearity and its continuity allow us to build more complex and
effective neural networks. The output of a generic i-th neuron is evaluated as in Equation (1).

outi = f (neti) (1)

in which f is the activation function and neti is the internal potential of the i-th neuron,
defined as in Equation (2).

neti =
d

∑
n=1

wjiinj + w0iin0 (2)

where j indicates the number of inputs of the i-th neuron; it is possible to identify the
following terms:

• inj are the inputs;
• wji are the weights of the i-th neuron;
• in0 is the bias of the i-th neuron, equal to 1.

The aggregation of multiple neurons designed as described and illustrated in Figure 2
gives rise, as mentioned, to complex structures called neural networks, typically organized
in various layers, with each layer being formed by a certain number of neurons. Usually, in
a neural network, there is an input layer, an output layer, and one or more intermediate
levels called hidden layers. The choice of the number of hidden layers depends on the
objective and does not follow canonical rules. Regarding the number of neurons for each
level, the same consideration applies as before.
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Figure 2. Neuron structure and output.

In the literature, it is possible to find different configurations of neural networks [44].
Having analyzed the nature of the problem under examination, in which the value to be
predicted is not temporally correlated to the others (each series of KPIs identifies a different
tire that corresponds to a different wear level), the NN with the simplest architecture, the
feed-forward, has been chosen. Feed-forward Neural Networks are structures in which
connections link neurons of a certain level only with neurons of a subsequent level. So,
backward connections or connections between neurons of the same level are not allowed
in these networks (Figure 3). Feed-forward networks do not have memory about what
occurred at previous times, so the output is determined only by the current inputs. These
kinds of networks are the foundation for computer vision, natural language processing,
and other work, such as making predictions concerning the future course of a quantity.

Figure 3. Feed-forward Neural Network graph.
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Once the network topology has been set, that is, once the type of network, the number
of layers, and the number of neurons for each layer have been chosen, it is necessary to train
the network. Training the network means solving the problem of optimizing the weights
and biases related to the neurons referring to a certain subset of the total dataset, called
the training set, with the aim of gradually reducing the prediction error. To evaluate the
error and train the network correctly, an error or loss function and an algorithm must be
introduced. Often, the backpropagation algorithm is used to implement the optimization
routine for the weights and biases in order to reduce this error. The backpropagation
algorithm is based on the gradient descent method or on methods similar to this and
has the aim of reducing the error between the result of the network and the target up
to a value suitable for the type of application. In simple terms, after each forward pass
through a network, backpropagation performs a backward pass while adjusting the model’s
parameters (weights and biases). So, the mechanism of backpropagation repeatedly adjusts
the weights and biases of the connections in the network in order to minimize a measure of
the difference between the actual output vector of the net and the desired output vector.
More specifically, it happens that, at the beginning, the network initializes the weights and
biases randomly and produces results. These results are compared with the target results
and from this comparison the loss error function is evaluated. With the gradient descent
method, it is possible to find the weights and biases that will yield a smaller loss in the
next iteration by calculating the partial derivatives of the error function with respect to
the single weights and biases of the neurons. So, the objective is to find out which node is
responsible for most of the loss in every layer in order to penalize it by giving it a smaller
weight value and thus lessening the total loss of the model.

In order to minimize the difference between the neural network’s output and the
target output, we have to understand how the model performance changes with respect to
each parameter in our model. To do that, it is necessary to calculate the partial derivatives
between our loss function and each weight. For each epoch, that is, for each work cycle
of the neural network, the backpropagation algorithm is used to subtract the correspond-
ing derivatives from the weights multiplied by a “learning rate” (which avoids abrupt
variations in the weights) in order to create the optimization routine. This procedure
continues until the error function reaches a sufficiently low value in relation to our needs. It
is important to observe that the minimization of an error function in the manner described
requires, as mentioned, target values of the output, and so it is a situation of supervised
learning, since for each input there is a desired output defined.

After the training phase, there is the validation phase, which exploits another subset
of the total dataset, called the validation set. This phase serves to avoid the error reaching
a definitive and specific minimum for the training set causing overfitting. Overfitting
is the phenomenon for which the network fits the training data too well and adapts to
it, invalidating the work of the net with another dataset and, therefore, obstructing the
generalization process. So, the validation process is necessary to stop the training phase
and iterations of this before overfitting occurs. In short, during this phase, the error relating
to the validation set is evaluated and when this error starts to increase instead of decreasing,
the training stops. Finally, there is a last phase, called the test phase, which uses an
additional set of data, known as the test set, which aims to evaluate the performance and
the quality of the network. Regarding the division of the dataset into the three subsets
mentioned, typically an equal division is not used, as a larger subset is assigned to the
computationally more expensive phase, which is that of training.

2.2. Principal Component Analysis—PCA

One issue encountered when dealing with a set of multivariate data is the sheer
abundance of variables, making it challenging to employ simple techniques for obtaining
an informative initial assessment of the data. Specifically, multivariate data analysis
pertains to a statistical analysis category that involves more than two dependent variables,
ultimately yielding a single output, as seen in the presented case study.
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Principal Components Analysis (PCA) is a multivariate method designed to address
this problem by aiming to reduce the dimensionality of a multivariate dataset while re-
taining as much of the original variation as possible. This objective is accomplished by
transforming the original variables into a new set of variables known as principal compo-
nents. These components are linear combinations of the original variables, and they are
uncorrelated and ordered in a manner that prioritizes the first few components accounting
for the majority of the variation observed across all the original variables. As a result,
conducting a principal components analysis generates a limited number of new variables
that can effectively serve as substitutes for the initial large number of variables [34].

In other words, the main goal of principal components analysis is to describe variation
in a set of correlated variables, xT = (x1, . . . , xq), in terms of a new set of uncorrelated
variables, yT = (y1, . . . , yn), each of which is a linear combination of the x variables. The
new variables are derived in decreasing order of “importance” in the sense that y1 accounts
for as much of the variation in the original data as possible amongst all linear combinations
of x. Then y2 is chosen to account for as much of the remaining variation as possible,
subject to being uncorrelated with y1, and so on. The new variables defined by this process,
y1, . . . , yn, are the principal components (Figure 4).

Figure 4. Principal components’ proportions.

The general hope of principal components analysis is that the first few components
will account for a substantial proportion of the variation in the original variables and
can, consequently, be used to provide a convenient lower-dimensional summary of these
variables that might prove useful for a variety of reasons. The first principal component of
the observations is that linear combination of the original variables whose sample variance
is greatest amongst all possible such linear combinations (Equation (3)). The second
principal component is defined as that linear combination of the original variables that
accounts for a maximal proportion of the remaining variance subject to being uncorrelated
with the first principal component. Subsequent components are defined similarly.

yi =
q

∑
j=1

aijxj (3)

In order to perform a PCA, the following steps have to be carried out:

1. calculation of the covariance matrix of the normalized experimental data;
2. evaluation of the coefficients aij of the principal components as eigenvectors of the

covariance matrix;
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3. calculus of the Principal Components yi as a linear combination of the eigenvectors
with normalized experimental data;

4. evaluation of the proportions, as in Equation (4):

Propi% =
λi

∑ λ
(4)

where λi is the eigenvalue of the correlation matrix.
The PCA made it possible to understand which variables are able to explain the

variance of the studied dataset. In the second approach proposed in this work, Principal
Components will be used as starting variables to evaluate a multiple linear regression.

2.3. Multiple Linear Regression

Linear Regression is probably one of the most powerful and useful tools available
to the applied statistician. This method uses one or more variables to explain the values
of another. Statistics alone cannot prove a cause-and-effect relationship but it can show
how changes in one set of measurements are associated with changes in the average values
in another. With this approach, the data analyst specifies which of the variables are to be
considered explanatory and which are the responses to these [45].

This process requires a good understanding of the data and a preliminary study of
them. A regression model does not imply a cause-and-effect relationship between the
variables. Even though a strong empirical relationship may exist between two or more
variables, this cannot be considered evidence that the regressor variables and the response
are related in a cause-and-effect manner. To establish causality, the relationship between
the regressors and the response must have a basis outside the sample data; for example,
the relationship may be suggested by theoretical considerations. The regression equation is
only an approximation to the true functional relationship between the variables of interest.
These functional relationships are often based on physical or other engineering or scientific
theory, that is, knowledge of the underlying mechanism [32].

A regression model that involves more than one regressor variable is called a multiple
regression model. The term “linear” is used because the general equation of this kind of
model (Equation (5)) is a linear function of k regressors β0, β1, . . . βk and not because it is a
linear function of the xs.

y = β0 + β1x1 + β2x2 + . . . + βkxk + e (5)

This model describes a hyperplane in the k-dimensional space of the regressor variables
xj [32]. Models that include interaction effects may also be analyzed by multiple linear
regression methods. For example, suppose that the model is expressed as in Equation (6).

y = β0 + β1x1 + β2x2 + β12x1 x2 + e (6)

If x3 = x1 x2 and β3 = β12, then Equation (6) can be written as Equation (7).

y = β0 + β1x1 + β2x2 + β3x3 + e (7)

which is a linear regression model.
It is more convenient to deal with multiple regression models if they are expressed in

matrix notation (Equation (8)). This allows a very compact display of the model, data, and
results. yi is a random variable (response variable) with a distribution that depends on a
vector of known explanatory values xi (predictor or regressor).

Y = Xβ + e (8)

where the independent, normally distributed errors ei have zero means and constant
variances σ2. Additionally, it usually assumes that the errors are uncorrelated. This means
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that the value of one error does not depend on the value of any other error. The different
terms presented in Equation (8) can be described as follows:

• Y is an n× 1 vector: 
y1
y2
...

yn


• X is an n× (k + 1) matrix: 

1 x11 x12 · · · x1k
1 x21 x22 · · · x2k

1
...

...
. . .

...
1 xn1 xn2 · · · xnk


• β is an (k + 1)× 1 vector: 

β0
β1
...

βk


• e is an n× 1 vector: 

e1
e2
...

en


The regression coefficients β are parameters that need to be estimated from the ob-

served data (yi, xi). This process is also called fitting the model to the data or “training”.
Thus, regression analysis is an iterative procedure in which data lead to a model and a fit of
the model to the data is produced. The quality of the fit is then investigated, leading either
to modification of the model or the fit or to the adoption of the model.

2.4. Model Performance Indicators

In order to assess the goodness of a regression model, it is necessary to define some
specific indices able to examine how well the model represents the data from which it is
derived and to what extent it is possible to use the model for predictive purposes. This type
of analysis is known as model validation and may be carried out with different types of
statistical tools. In particular, in this research activity, three different indicators have been
considered with the aim to compare the results obtained for the approaches implemented.

2.4.1. Coefficients of Determination

The coefficient of determination, R2, represents the proportion of the variation in
the dependent variable “explained” by variation in the independent variables [46]. The
sum of the squared deviations of the dependent variable about its mean (Equation (9)—
the “total” variation in the dependent variable) can be broken into two parts, called the
“explained” variation (Equation (10)—the sum of squared deviations of the estimated values
of the dependent variable around their mean) and the “unexplained” variation (the sum of
squared residuals). R2 is measured either as the ratio of the “explained” variation to the
“total” variation or, equivalently, as minus the ratio of the “unexplained” variation to the
“total” variation, and thus represents the percentage of variation in the dependent variable
“explained” by variation in the independent variables.
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The total variation in the dependent variable y about its mean is called SST (the Total
Sum of Squares) and it is evaluable as in Equation (9).

SST = ∑
n
(yi − ȳ)2 (9)

The “explained” variation, the sum of squared deviations of the estimated values
of the dependent variable about their mean, is called SSR (the Sum of Squares due to
Regression), and its formulation is shown in Equation (10).

SSR = ∑
n
(ŷi − ¯̂y)2 (10)

The “unexplained” variation, the sum of squared residuals, is called SSE (the Sum
of Squares Error). After these definitions, is it possible to determine the coefficient of
determination R2, expressed by Equation (11):

R2 =
SSR
SST

= 1− SSE
SST

(11)

Because 0 ≤ SSR ≤ SST , it follows that 0 ≤ R2 ≤ 1. Values of R2 that are close to 1
imply that most of the variability in y is explained by the regression model. The statistic R2

should be used with caution since it is always possible to make R2 large by adding enough
terms to the model.

The R2 statistic adjusted to account for degrees of freedom is called the “adjusted R2”
or R2

adj. It is derived from Equation (11). Estimation of these variances involves corrections
for degrees of freedom, yielding Equation (12) [46].

R2
adj = R2 −

[
k− 1
n− k

]
(1− R2) = 1−

[
n− 1
n− k

]
(1− R2) (12)

where k is the number of independent variables and n is the number of observations.

2.4.2. Root-Mean-Squared Residual Error

Root Mean Square Error (RMSE) is a standard way to measure the error of a model in
predicting quantitative data [35]. Formally it is defined as in Equation (13).

RMSE =

√
∑
n

(ŷi − yi)2

n
(13)

RMSE is always non-negative, and a value of 0 (almost never achieved in practice)
would indicate a perfect fit to the data. The quadrature formulation in RMSE (squaring
the differences and then taking the square-root) emphasizes the contribution of the larger
differences. This is the same functional form as standard deviation σ, so it is directly
comparable to that quantity.

3. Database

The data used for the construction of the database come from the acquisitions provided
by an industrial motorsport partner and collected during a race event; indeed, all the
data have been normalized for confidentiality reasons. The reference vehicle is a single-
seater vehicle, equipped with high-performance tires, available with several different tread
compounds. All the data have been acquired in dry conditions since the reference tires
are all slick tires. For each event, road roughness profiles, vehicle telemetry data, and tire
compound properties were provided and the wear levels of the individual sets of tires
used were disclosed. This enormous amount of data has made it possible to obtain a large
database that can be manipulated according to the model to be built. It was decided to
process the data in order to extrapolate KPIs relating to individual runs, performing a series
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of different operations on the starting acquired data. All the data have been acquired with
high-precision sensors, among the best performing on the market, with an adequate level
of accuracy for the purpose of this research.

Subsequently, efforts were made to refine the data by removing outliers, which refer to
observations that deviate from the established pattern exhibited by other data points. The
motivation behind identifying outliers is the recognition that they can significantly impact
the resulting estimates, potentially in an undesirable manner. It is crucial to thoroughly
examine outliers in order to determine if any plausible explanation exists for their atypical
behavior. Possible factors contributing to outliers include measurement or classification
errors by sensors, as well as erroneous data entry into the computer system.

Most multivariate datasets can be represented in the same way, namely in a rectangular
format known from spreadsheets, in which the elements of each row correspond to the
variable values of a particular observation of a single wheel and the elements of the
columns correspond to the values taken by a particular variable. Data can be written in
such a rectangular format as in Table 1.

Table 1. Multivariate dataset.

Observation Variable 1 . . . Variable q

1 x1,1 . . . x1,q
...

...
...

...
n xn,1 . . . xn,q

n is the number of units, q is the number of variables recorded on each observation, and xi,j denotes the value
of the jth variable for the ith unit. The observation part of the table above is generally represented by an n× q
data matrix.

The global amount of data, organized by runs, has been divided into two different
datasets; the largest one has been used for the training and validation phase of the models,
whereas the second one has been adopted to assess the models’ performance during the
testing phase. The number of observations for these two databases is reported in Table 2.

Table 2. Training and testing database—number of observations.

Dataset N◦ Observations

Run Training Database 200
Run Testing Database 80

Taking into account the different areas of analysis and the information necessary to
characterize the single observation, the organization of the dataset was modeled to improve
its use, highlighting the three categories of KPIs:

• Road Roughness Indices;
• Telemetry Indices;
• Tire Viscoelastic Indices.

3.1. Road Roughness Indices

Surface roughness has a big impact on several physical phenomena and plays a
fundamental role in the wear of sliding surfaces. For this reason, its characterization is
also a fundamental step in this research activity. Nowadays, available optical surface
profiling instruments allow for a detailed measurement of surface roughness covering
several length scales. This enables the validation of a mathematical statistical description
of pavement texture within the framework of self-affine surfaces and hence provides a
holistic characterization of surface roughness covering several length scales within a few
characteristic parameters. Generally, when talking about road texture, it is possible to describe
its complexity by distinguishing the two most relevant scales: macro-roughness and micro-
roughness. The first one represents the surface irregularities of longer wavelengths. The micro
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one, instead, is produced by fluctuations of short wavelengths characterized by asperities
(local maxima) and valleys (local minima) of varying amplitudes and spacing [47].

The roughness measurements contained in the reference databases of this study have
been collected on several locations on a series of different tracks. The roughness KPIs
considered for a specific circuit are obtained as mean values of those evaluated on the
various locations of the same track. In order to extract this relevant information, different
techniques commonly adopted in the literature have been applied. First of all, each profile
is studied with a statistical analysis, from which it is possible to obtain three relevant
indicators [48]. Considering a profile, z(x), profile heights are measured from a reference
line. The center line, or mean line, is defined such that the area between the profile and the
mean line above the line is equal to that below the mean line. The first KPI is the arithmetic
mean of the absolute values of vertical deviation from the mean line through the profile,
also known as Ra, evaluable as expressed in Equation (14).

Ra =
1
L

∫ L

0
|z−m| dx (14)

where m = 1
L
∫ L

0 z dx and L is the sampling length of the profile.
By studying the shape of the probability density function, it is also possible to define

two other statistical height descriptors: skewness and kurtosis [49,50]. The first one
represents the degree of symmetry of the distribution function, while the latter refers to the
peakedness of the distribution and it is a measure of the degree of pointedness or bluntness
of a distribution function. They are defined as in Equations (15) and (16), respectively.

Sk =
1

σ3L

∫ L

0
(z−m)3 dx (15)

Ku =
1

σ4L

∫ L

0
(z−m)4 dx (16)

in which σ is the square root of the arithmetic mean of the square of the vertical devia-
tion from the mean line. For the complete characterization of a profile or a surface, the
parameters just discussed are not sufficient [29]. These parameters are seen to be primarily
concerned with the relative departure of the profile in the vertical direction only; they do
not provide any information about the slopes, shapes, or sizes of the asperities or about the
frequency and regularity of their occurrence. To complete the profile characterization it is
possible to evaluate some spatial parameters, such as the wavelength. Although the profile
contains a wide, continuous range of wavelengths, the macro wavelength of the profile can
be defined as in Equation (17).

λ = 2π

∫ L
0 |z(x)−m| dx∫ L

0 |z(x)| dx
(17)

To properly parameterize the profile from a spatial point of view, exploring also the
micro-scale, two further techniques, based on the concept of self-affine surfaces [51,52], have
been adopted: the height different correlation function (HDC) [53,54] and the power spectral
density (PSD) [55,56]. Thanks to the application of these two methods, it is also possible to
evaluate the correlation length, ξ⊥, also known as peakyness, normal to the surface:

σ2 =
ξ2
⊥
2

(18)

To summarize, applying different strategies to the acquired road profile, it is possible
to obtain a series of KPIs specific for each circuit, as indicated in Table 3.
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Table 3. Road roughness indices.

Symbol Name Unit of Measure

λMacro Macro Wavelength mm
λmicro micro Wavelength mm
H Hurst Coefficient (−)
RaMacro Center Line Average Macro mm
Ramicro Center Line Average Micro mm
ξ⊥ Peakyness mm
Sk Skewness (−)
Ku Kurtosis (−)

3.2. Telemetry Indices

Motorsport cars are equipped with hundreds of sensors, able to monitor several
aspects related to vehicle performance. Combining the raw acquisitions with other relevant
parameters of the vehicle or among them, it is possible to obtain more and more information
about the real operating conditions of the vehicle during races. The cars can be seen, in this
way, as rolling sensor networks, constantly gathering and transmitting information about
the car and driver to the racing team. In this context, for the presented activity, telemetry
data have been analyzed and pre-processed in order to extract relevant information to be
used in the predictive models. In particular, vehicle and tire velocities, tire temperatures
and inflation pressure, external air and track temperatures, and wheel camber variation
have been considered starting from the acquisitions of dedicated sensors. In addition, tire
interaction forces, contact patch extensions, and slip indices have been evaluated thanks
to mathematical models starting from the acquired channels. For what concerns the slip
indices, it is possible to define a longitudinal slip ratio and a lateral slip angle, as described
in Equations (19) and (20), respectively.

sx =
vx −ΩR

vx
(19)

sy =
vy

vx
= tan(α) ≈ α (20)

in which vx is the longitudinal component of the wheel center velocity, vy is the lateral
component of the wheel center velocity, R is the pure rolling radius, and Ω is the angular
velocity of the wheel. The lateral slip angle is often also indicated with α. Considering
only the numerators of Equations (19) and (20), it is possible to isolate the so-called sliding
velocities along the longitudinal and lateral direction, reported in Equations (21) and (22).

vsx = vx −ΩR = sxvx (21)

vsy = syvx (22)

By combining the information relating to the interaction forces and the sliding veloci-
ties, it is possible to introduce the friction power calculated along the longitudinal and lateral
equation, as shown in Equations (23) and (24).

FPx = Fxvsx (23)

FPy = Fyvsy (24)

These quantities instantly define the thermal power due to the pneumatic–soil interac-
tion or better, to the tangential stresses that, in the contact area in sliding with respect to the
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ground, perform work that is dissipated in heat. This power will hereinafter be referred to
as friction power and it will be indicated with FP (Equation (25)).

FPtot = FPx + FPy (25)

To build the database and synthesize the amount of data collected during a run in a
single representative value, two different methods have been adopted:

• For the quantities representing energies or powers, the sum of which still has physical
meaning, the sum of these quantities was evaluated during the entire run.

• All the other quantities, instead, have been reduced by considering their average value
and the standard deviation during the entire run.

Finally, after these operations, the different KPIs related to telemetry data have been
defined, as reported in Table 4.

Table 4. Telemetry indices.

Symbol Name Unit of Measure

TSur f Avg Average Tire Surface Temperature ◦C

TSur f Std Tire Surface Temperature Standard Deviation ◦C

TInner Avg Average Tire Inner Liner Temperature ◦C

TInnerStd Tire Inner Liner Temperature Standard Deviation ◦C

TRoad Avg Average Track Temperature ◦C

TAmbient Avg Average External Air Temperature ◦C

Fx Avg Average Longitudinal Force N

FxStd Longitudinal Force Standard Deviation N

Fy Avg Average Lateral Force N

FyStd Lateral Force Standard Deviation N

Fz Avg Average Vertical Force N

FzStd Lateral Force Standard Deviation N

Vsx Avg Average Longitudinal Sliding Velocity m/s

VsxStd Longitudinal Velocity Standard Deviation m/s

Vsy Avg Average Lateral Sliding Velocity m/s

VsyStd Lateral Velocity Standard Deviation m/s

FPx Longitudinal Friction Power W

FPy Lateral Friction Power W

FPTOT Total Friction Power W

SlidDist Sliding Distance m

γAvg Average Dynamic Camber Deg

pAvg Average Tire Inflation Pressure Pa

CPArea Contact Patch Area mm2

DistTOT Total Run Distance m

3.3. Tire Viscoelastic Indices

As it is well-known, tires are a composite material made mainly of rubbery material. The
external component of the tire, the tread, is subjected to violent stresses to maintain contact
with the road. Its wear is one of the main sources of decay of vehicle performance and, for
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this reason, it is essential to understand how its properties vary while the vehicle is moving.
Like all rubbery materials, the tire tread also has to be studied as a viscoelastic material.

A viscoelastic material is a deformable material with a behavior that lies between a
viscous liquid and an elastic solid. This kind of solid does not show a linear relationship
between stress and applied strain. Indeed, their behavior deviates from Hooke’s law
and exhibits elastic and viscous characteristics at the same time. The typical response of
viscoelastic materials is characterized by a strong dependence on the rate of straining dε/dt;
the faster the stretching, the larger the stress required. The effect of stretching shows that
the viscoelastic materials depend on time; the most generic equation that describes this
feature is Newton’s Law [31]:

σ = η
dε

dt
(26)

Newton’s Law shows the connection between the stress and the strain rate through
the viscosity coefficient η; every material which satisfies Equation (26) can be classified
as a viscoelastic material. It is fundamental to underline that viscoelastic materials, after
removing any deforming force, return to their original shape after a certain time period;
contrariwise, when a perfectly elastic solid is subjected to a force, it distorts instantaneously
in proportion to the applied load.

For viscoelastic materials, it can be assumed that sinusoidal stresses or strains of
constant frequency are applied to a sample until a steady sinusoidal strain or stress results,
with a fixed phase angle between the input and the output (Figure 5). For example, for a
sinusoidal shear strain expressed in Equation (27), where ε0 is the strain amplitude and ω
is the angular frequency, the stress σ will oscillate sinusoidally, as shown in Equation (28).

ε(t) = ε0 sin(ωt) (27)

σ(t) = σ0 sin(ωt + δ) (28)

Figure 5. Strain–stress phase.

Using the trigonometric formula, Equation (28) can be rewritten as in Equation (29).

σ(t) = ε0[E′(ω) sin(ωt) + E′′(ω) cos(ωt)] (29)

In the last formula, E′(ω) = (σ0/ε0)cos(δ) is the storage modulus, while E′′(ω) =
(σ0/ε0)sin(δ) is the loss modulus. The first is a measure of the elastic energy stored
and recovered, while the second is a measure of the dissipated energy as heat in cyclic
deformation. The ratio E′′(ω)/E′(ω) is the tan(δ), also called the loss factor, where δ is the
phase angle by which the strain lags behind the applied stress.
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The modulus, the energy loss, and hysteresis of a viscoelastic material change in
response to two parameters: the frequency with which the force is applied and the tem-
perature, which produce opposite effects on the rubber. In particular, whenever the stress
frequency is increased at a fixed temperature, the polymer appears in a glassy state; con-
versely, if the material heats up at a given stress frequency, it becomes softer and the
compound exhibits rubbery behavior.

To evaluate the properties of a generic viscoelastic material in different conditions of tem-
perature and frequency, it is possible to apply the Time-Temperature Superposition Principle
(TTSP) theory [57] combined with the William–Landel–Ferry (WLF) equation [58]. In order to
represent the storage modulus (E′) curves at a higher or lower frequency than the reference
frequency ω0, the shift factor, aT, is evaluated through the empirical WLF Equation (30).

log(aT) = log
(ω0

ω

)
=
−C1(T − T0)

C2 + (T − T0)
(30)

In Equation (30), the following parameters appear:

• T0 is the reference temperature for the storage modulus master curve;
• T is an arbitrary temperature;
• ω0 is the reference frequency associated with the reference temperature T0;
• ω is the new frequency;
• C1 and C2 are empirical constants adjusted to fit the values of the shift factor (aT).

On the other hand, if the purpose is to evaluate the storage modulus at different
temperatures than the reference ones, Equation (31) can be used.

T = T0 −
C2 log

(ω0
ω

)
C1 + log

(ω0
ω

) (31)

In this activity, the viscoelastic properties of the different compounds available have
been evaluated by adopting an innovative non-destructive technique, called VESevo [59–61].
Thanks to this innovative device, it has been possible to determine the master curve of
the storage modulus and of the loss factor for the various typologies of tires. In this way,
knowing the solicitation frequency and subsequently, the shifted temperature according to
WLF equations, it was possible to obtain the values of the storage modulus and loss factor
in specific real working conditions representative of the entire run. The viscoelastic indices
reported in Table 5 have been calculated definitively for each compound.

Table 5. Viscoelastic indices.

Symbol Name Unit of Measure

fHz Solicitation Frequency Hz
T∗ Shifted Temperature ◦C
E′(T∗) Storage Modulus at the Shifted Temperature MPa
tan(δ)(T∗) Loss Factor at the Shifted Temperature (−)

3.4. Wear Measurements

After the definition of the KPIs contained in the databases, it is necessary to spend a
few words about the wear measurements and their pre-processing. The wear data were
provided in the form of depth detected by reading inspection holes on the tread at the end
of each run. For each tire used, the wear measurements come out reading the tread depth
of each available spot thanks to a professional tire tread depth tool, widely used in the
motorsport context, averaging several measures for each spot in order to obtain reliable
wear evaluation. Since these spots are not equally spaced in the tread width, the acquired
values have been interpolated. In this way, it has been possible to obtain a “virtual” value
of the wear for each rib (Figure 6). This operation allows us to obtain wear values on the
“virtual” ribs that can be interpreted as volumetric loss of material, since in this case, the
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spots are equally spaced. The values thus obtained have been processed in order to obtain
an average wear value along the entire length of the tread (WearMean); this quantity is
expressed in percentage terms with respect to the original thickness of the tread.

Figure 6. Wear measurements—schematic tread spots.

4. Results

In this section, the different methods, already presented in Section 2, have been applied
to the available databases, in order to build proper tire tread wear prediction models. For
each approach, the performance of the regression model has been assessed for the different
construction phases: training, validation, and testing.

4.1. Feed Forward Neural Network

The Feed-Forward Neural Network has been designed with two hidden layers, one
input layer and one output layer. The choice of two hidden layers was guided by various
factors including the desire to not overcomplicate the neural network, both due to the
small number of observations available and to avoid long training times; moreover, using
additional hidden layers would certainly have caused overfitting problems. The number
of neurons in the first hidden layer has been chosen as equal to the number of inputs.
Regarding the number of neurons in the second hidden layer, a looping mechanism has
been inserted in the NN to find the best combination among the neurons of the two hidden
layers and to optimize the work of the network thanks to subsequent trainings triggered by
the looping mechanism. Downstream of the looping mechanism, the network was taken
with the pair of neurons that minimize the error function, in our case, the mean square error
(MSE), with which the performance of the network is evaluated during the training. This
network with the optimal pair of neurons was trained again to see if the performance was
able to increase with another training. In the case of a positive response, the last trained net
was preferred; otherwise, it was returned to the previous one. Finally, the best network was
used to make the prediction. In addition, it was noted that networks with a high number of
neurons always presented an overfitting problem, showing excellent results on the training
dataset, but a poor ability to predict and generalize the problem.

To train the network, the settings reported in Table 6 have been used to optimize the
generalization and speed of the net as well as the results.

Table 6. Feed-forward Neural Network settings.

Neural Network Settings

Training Algorithms Levenberg–Marquadrat [62]
Training Dataset 80%
Validation Dataset 20%
Number of Epochs 100
Validation Checks 50

The larger database was randomly divided into two parts: 80% was used for the
training phase, while the remainder was used for validation. In addition, the testing
database was used to evaluate the predictive performance of the network in the testing
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phase. The number of epochs is the number of presentations to the network of all patterns
of the training set, and it was chosen to find the best trade-off between the quality of the
results and the NN processing time. The validation checks are used to stop the training
when the validation subset error rate increases continuously for more than 50 epochs in the
presented case. This has the goal of limiting as much as possible the overfitting phenomena
that could compromise the generalization.

Finally, in order to reduce the number of inputs for the NN, a feature selection has
been performed, taking into consideration only the KPIs that show a regression coefficient
with the target, the mean wear, higher than 0.15 and that are not directly correlated to each
other. In this way, twelve indicators have been selected, as illustrated in Table 7.

Table 7. Neural network inputs.

Symbol Name Unit of Measure Working Range

λMacro Macro Wavelength mm 3 ÷ 6
RaMacro Center Line Average Macro mm 4 ÷ 7
ξ⊥ Peakyness mm 0.5 ÷ 2
Sk Skewness (−) −1.5 ÷ 0
Ku Kurtosis (−) 2.5 ÷ 6

TSur f Avg
Average Tire Surface

Temperature
◦C 55 ÷ 85

TInner Avg
Average Tire Inner Liner

Temperature
◦C 90 ÷ 135

FPTOT Total Friction Power W 1010 ÷ 1011

pAvg
Average Tire Inflation

Pressure Pa 80,000 ÷ 15,000

DistTOT Total Run Distance m 30,000 ÷ 250,000

E′(T∗) Storage Modulus at the
Shifted Temperature MPa 30 ÷ 350

tan(δ)(T∗) Loss Factor at the Shifted
Temperature (−) 0.20 ÷ 0.35

After several attempts, the best network architecture has been found, with a number
of neurons for the layers of 12–12–13–1, as reported in Figure 7.

Figure 7. Neural network architecture.

Despite the good results obtained in the training phase (Figure 8), the network is
not able to complete the training because it quickly reached an overfitting condition,
overcoming the number of maximum validation checks acceptable. This is mainly related
to the training database composition, in which the different wear levels are not explored
homogeneously.

This is particularly evident for the high level of wear, demonstrated by the observations
for which the network commits the bigger errors, as visible from Figure 9. The inability of
the network to correctly predict high wear values makes it an ineffective tool, given the
high RMSE values detected in the predictions (Table 8).

Another important limitation of this approach is that the network does not directly
provide feedback on the most relevant KPIs, making structured improvement of the ap-
proach difficult. This strategy is the most easily implementable of the three proposed, but
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to obtain stable results it would be necessary to have a much larger and more homogeneous
dataset available.

Figure 8. Neural network training.

(a) Neural Network Testing (b) Measures vs. Predictions

Figure 9. Neural network testing.
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Table 8. Feed-Forward Neural Network performance indicators.

Model R2 R2
adj RMSE

FFNN—Training 0.7301 0.7144 7.1456
FFNN—Testing 0.2492 0.1278 16.062

4.2. Principal Component Analysis and Multiple Linear Regression

As already described in Section 2, Principal Component Analysis gives the opportunity
to reduce the dimensionality of the database, maintaining its global variance. The preliminary
operation to perform a PCA is to investigate the correlations among the input variables in
order to select only the uncorrelated inputs; this operation is a bit different from the one
performed with the NN, in which the target is also involved in this pre-processing stage. After
this operation, it has been possible to define seventeen input variables that did not show
mutual correlations. Thanks to the application of the PCA, it has been possible to reduce the
dimensionality, identifying three relevant Principal components able to synthesize almost
more than 99% of the variance of the starting training dataset, as shown in Figure 10.

Figure 10. Principal Component Analysis.

After that, the three Principal Components have been used as input to build a multiple
linear regression. The predictions made with the regressors evaluated, for both the training
and the testing dataset, are illustrated in Figure 11.

As is possible to see from the two last plots, this regression model is more conservative
than the one identified with neural networks, always estimating intermediate levels of wear,
with a high forecast error for both lightly and heavily worn tires. This is also highlighted
by the low values of R2 and R2

adj reported in Table 9.
Despite the more detailed analysis of the starting database, this approach does not

show acceptable results in predicting wear. Furthermore, the manipulation of the original
database is complex and dependent on the knowledge of the coefficients that identify the
principal components.
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(a) Training (b) Testing

Figure 11. PCA + Regression.

Table 9. PCA + regression performance indicators.

Model R2 R2
adj RMSE

PCA + Regression—Training 0.1961 0.1262 12.332
PCA + Regression—Testing 0.1710 −0.0395 17.103

4.3. Physical Correlations and Multiple Linear Regression

In the last approach proposed, before developing the linear multiple regression model, a
series of database investigations were carried out to find correlations between the physical
variables, in order to more robustly define the set of inputs with which to define the regression.

First of all, considering the information provided, it was realized that in several
cases, the front wheels show phenomena of irregular wear, which are difficult to quantify
using KPIs. In addition, due to the steering dynamics, the front tires were subject to
comparable friction power with each other, but not with the rear tires; for these reasons,
two separate investigations were conducted, one for the tires of the front axle, the other
for the rear. The dependence between mean wear and friction power was then analyzed,
considering the accumulated energy dissipated in the entire run. Starting from the Mean
Wear Percentage vs. Total Friction Power plot, an interpolating line has been defined for
each circuit (Figure 12).

In order to find a robust correlation among wear, friction power, temperature, and
road indexes, the following procedure has been carried out:

1. Two reliability indexes have been identified to obtain further information on the
robustness of the wear/friction correlation:

• R1—Obtained normalizing the RMSE among the experimental points on the plot
Wear vs. FPTOT and the linear fitting; it is used to weight fittings with other
performance indicators.

• R2—Obtained normalizing the number of consistent experimental points on
the plot Wear vs. FPTOT ; it is used to remove circuits with a lower number of
acquisitions from the fittings.

2. The slopes obtained for each circuit were compared with several temperature indica-
tors with the aim to find other correlations.

3. Finally, the residuals between the fitting line and the experimental points obtained
from the combination among wear, friction power, and temperature were plotted
against the road indexes already evaluated for each circuit.
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(a) Front Tires

(b) Rear Tires

Figure 12. WearMean—Each color represents a different track vs. FPTOT .

Thanks to this procedure, a good correlation has been found with the surface average
temperature (Figure 13) and, subsequently, it was noticed that residuals show good correla-
tions with road skewness, but only for rear tires (Figure 14). As already mentioned, this
means that for the front tires, the wear is also influenced by further phenomena, such as
graining or blistering.

Thanks to this preliminary physical correlation, it has been possible to select six inputs
in order to build two regression models for front and rear tires. The six inputs are reported
in Table 10 and the rear tire regression model shows interesting results for both the training
and validation phase (Figure 15).

With this methodology, the rear regression model shows the best performance if
compared with the other model presented (Table 11); this is mainly due to the preliminary
analysis carried out on the database, which made it possible to highlight the functional
relationships between the various key performance indicators. It is important to underline
that within the inputs of the regressive model, there are indicators of all three relevant areas
analyzed. As regards the model developed for the front wheels, the result is in line with
the models previously analyzed, with slightly higher R2 and R2

adj values.
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Figure 13. WearMean—FPTOT Slope vs. TSur f —Each color represents a different track.

Figure 14. Residuals vs. skewness—Each color represents a different track.

(a) Training (b) Testing

Figure 15. Physical correlations + regression.
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Table 10. Physical correlations + regression inputs.

Symbol Name Unit of Measure

Sk Skewness (−)
Ku Kurtosis (−)

TSur f Avg
Average Tire Surface

Temperature
◦C

FPTOT Total Friction Power W
CPArea Contact Patch Area mm2

tan(δ)(T∗) Loss Factor at the Shifted
Temperature (−)

Table 11. Physical correlations + regression performance indicators.

Model R2 R2
adj RMSE

Front—Correlation + Regression—Training 0.7645 0.7412 8.5303
Front—Correlation + Regression—Testing 0.3381 0.2297 17.6296
Rear—Correlation + Regression—Training 0.8126 0.7830 5.0905
Rear—Correlation + Regression—Testing 0.5242 0.4426 7.1491

For the case study presented, this third approach appears to be the most robust
and able to provide indications on the expected level of wear in a predictive manner.
Furthermore, this method allows a more conscious application of statistical techniques
based on the knowledge of the underlying physical phenomena. The use of a multiple
linear regression which directly adopts the KPIs present in the database as inputs makes
the procedure easily replicable and implementable in different contexts and scenarios.

5. Conclusions

In this work, three different methodologies to build wear models based on several
statistical and machine learning techniques have been presented. By exploiting different
types of data, relating to telemetry, road roughness acquisitions, and the viscoelastic
properties of the tire, it was possible to build a complex database made up of various
performance indicators. By applying the different strategies to the reference datasets, it
has been shown that the last approach presented, based on the combination of preliminary
physical correlations and the identification of a multiple linear regression model, is the most
effective for predicting the level of wear. This approach, despite its simplicity, can quickly
provide further information on the expected level of wear in conditions not yet explored
experimentally, becoming a useful tool for planning tender strategies. To further strengthen
the procedure, it will be necessary to apply it to increasingly large and homogeneous
databases in terms of explored wear levels and to define new innovative KPIs for the
evaluation of irregular wear conditions.
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