BRIDGING THE GAP BETWEEN TESTING AND SIMULATION 2019 INTERNATIONAL VI-grade CONFERENCE CONGRESS PARK HANAU, GERMANY / MAY 13th - 14th - 15th 2019

APPLIED VEHICLE RESEARCH

Real-time tire models for VI-CarRealTime and DiM applications: performance optimization, thermodynamics and innovative multi-physical Magic Formula

<u>Flavio Farroni</u>, Aleksandr Sakhnevych, Francesco Timpone, Damiano Capra, Gianluca Salvato, Antonio Sorrentino

And Date - Barry

MODELS AND TECHNOLOGIES TO OPTIMIZE VEHICLE / ROAD INTERACTION

Mega Ride

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

COMPANY HIGHLIGHTS

- "TIRE TECHNOLOGY OF THE YEAR" @ TIRE TECHNOLOGY EXPO 2018 igvee V
- GROWING TEAM (x3) AND REVENUES (x10) IN 3 YEARS WITH NO DEBT / NO EQUITY
- EXCLUSIVE INTERACTIONS WITH TIREMAKERS AND MOTORSPORT TEAMS

RESEARCH HIGHLIGHTS

- AWARDED BY "M.I.T. YOUNG INNOVATORS UNDER 35" 2018
- VD RESEARCH GROUP RESOURCES FROM 6 TO 13 PEOPLE IN 3 YEARS
- SUPPORT OF "TYRE LAB" UNIVERSITY FACILITY FOR EXPERIMENTAL ACTIVITIES

T.R.I.C.K. Tire-Road Interaction Characterization & Knowledge

A MODULAR PLATFORM FOR TIRE ANALYSIS AND MODELLING

T.R.I.C.K.: Tyre/Road Interaction Characterization & Knowledge

T.R.I.C.K.: Tyre/Road Interaction Characterization & Knowledge

- characterize the tires using the vehicle as a "moving lab"

PHYSICAL VEHICLE MODEL

- FROM ONBOARD STANDARD SENSORS TO TIRE FORCES EVALUATION

- SPECIFIC OUTDOOR TESTING PROCEDURE
- **REAL TIRES / REAL ROAD / REAL CONDITIONS**

-

T.R.I.C.K.: Tyre/Road Interaction Characterization & Knowledge

- characterize the tires using the vehicle as a "moving lab"
- objectivize tire and driving performance during testing

* for further info:

F. Farroni – T.R.I.C.K.: Tire/Road Interaction Characterization & Knowledge – A tool for the evaluation of tire and vehicle performances in outdoor test sessions – Mechanical Systems and Signal Processing – 72-73 808-831 (2016)

TRIP-ID: Tyre/Road Interaction Parameters IDentification

- a tool for multi-variable optimization applied to MF formulation

TRIP-ID: Tyre/Road Interaction Parameters IDentification

- a tool for multi-variable optimization applied to MF formulation

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

- PACEJKA PLOTTING TOOL

- TIR FILES VALIDATION

VIRTUAL TIRES DATABASE CREATOR

-

* for further info:

F. Farroni, R. Lamberti, N. Mancinelli, F. Timpone - TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig - Mechanical Systems and Signal Processing – (2018)

- NONDESTRUCTIVE THERMAL **CHARACTERIZATION**

> - ANY TIRE SIZE AND BRAND

- DISCRETIZATION UP TO **8 DIFFERENT LAYERS 16 DIFFERENT RIBS IN REAL-TIME**

thermoRIDE / adheRIDE & VI-grade MaxPerformance

thermoRIDE / adheRIDE & VI-grade MaxPerformance

Case study : DOE

Newborn Model: threedeeRIDE

F_ [N]

Cam-based muticontact model

• The cam-based multicontact interaction model is used to correctly model the tire/road interface whenever the tire is encountering soil irregularities

REAL-TIME CAM SHAPE AND CHARACTERISTICS VARIATION WITH: - VERTICAL LOAD - INFLATION PRESSURE - CAMBER ANGLE

Newborn Model: threedeeRIDE

UNIVERSITÀ DECLI STUE DI NAPOLI FEDERICO I

RACING & MOTORSPORT:

- evaluation of tire/road available friction for drivers' training activities and driving style optimization (definition of target slip ratio and sideslip angle for performance optimization and info to the user)

• SMART MOBILITY:

- evaluation of tire/road effective friction for V2V AND V2I applications

(tread and soil wear estimation, asphalt predictive manteinance, physical-based safety control algorithms, ...)

RACING & MOTORSPORT:

- evaluation of tire/road available friction for drivers' training activities and driving style optimization (definition of target slip ratio and sideslip angle for performance optimization and info to the user)

SMART MOBILITY:

- evaluation of tire/road effective friction for V2V AND V2I applications

(tread and soil wear estimation, asphalt predictive manteinance, physical-based safety control algorithms, ...)

New Scenarios - Onboard Control Logics

ONBOARD MF ID and real-time TRICK in motorsport

Evaluation of tire/road available friction for active controls and drivers' training activities

(definition of target slip ratio and sideslip angle for performance optimization and info to user)

curves referred to the same (s, y, Fz) working input

performance index = Fy_{act} / Fy_{opt}

New Scenarios - Onboard Control Logics

ONBOARD MF ID and real-time TRICK in smart mobility

Evaluation of tire/road effective friction for smart mobility applications

(tread and soil wear estimation, asphalt predictive maintenance, physical-based safety control algorithms,...)

A.I., Big Data analysis & Geolocalization-examples:

- several vehicles detected sudden and dramatic friction decrease in small area \rightarrow "oil spot" or singularity

- single vehicles detects sudden and dramatic friction variation in small area \rightarrow accident/puncture

- several vehicles detect progressive and significant friction decrease in medium area \rightarrow rain

- several vehicles detect progressive and dramatic friction decrease in medium area \rightarrow ice

- Several vehicles detect slow friction decrease in big area \rightarrow pavement wear

Single vehicle detects slow friction decrease in big area \rightarrow tire tread wear

performance index = Fx_i / Fx_A

Smart Mobility Platforms

open innovation scenarios:

- UE CONSORTIUMS
- R&D PARTNERSHIPS
- TECHNOLOGICAL JVs

DEVELOPMENT TOOL OF THE YEAR

2018: VI-grade – DiM250

MIT Technology Review

MIT INNOVATORS UNDER 35 2018

OF THE YEAR

2018

Borsa Italiana

ECCELLENZE D'IMPRESA 2018 2019: MegaRide – Tire Simulation Pack

info@megaride.eu www.megaride.eu

Via Claudio 21, 80125 NAPOLI DII – Dipartimento di Ingegneria Industriale Università degli Studi di Napoli "Federico II"

https://www.facebook.com/MegaRidevehicledynamics/ https://www.instagram.com/megaride_vehicle_dynamics/